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Face Recognition

3

Overview: Deep Face Recognition: A Survey

Current accuracy, e.g., MegaFace 99.1%

[13] Kemelmacher-Shlizerman, Ira et al. “The MegaFace Benchmark: 1 Million Faces for Recognition at Scale.” (CVPR 2016)



Most Famous: SphereFace, CosFace, ArcFace
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● All start with softmax loss
● Reformulate to be depended on class center-sample angle
● Embedding vectors distributed around hypersphere

b=0

1

[23] Liu, W. et al. “SphereFace: Deep Hypersphere Embedding for Face Recognition.” (CVPR, 2017)

[23]



Most Famous: SphereFace, CosFace, ArcFace
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● All start with softmax loss
● Reformulate to be depended on class center-sample angle
● Embedding vectors distributed around hypersphere

[23] Liu, W. et al. “SphereFace: Deep Hypersphere Embedding for Face Recognition.” (CVPR, 2017)
[24] Wang, H. et al. “CosFace: Large Margin Cosine Loss for Deep Face Recognition.” (CVPR 2018)
[25] Deng, J. et al. “ArcFace: Additive Angular Margin Loss for Deep Face Recognition.” (CVPR 2019)

[23]

[24]

[25]
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● Common datasets: Market-1501, CUHK-03
● Evaluation: rank-k and mAP

Person ReID

7
Often trained with cross-entropy (ID) and triplet loss

[26] Li, W. et al. “DeepReID: Deep Filter Pairing Neural Network for Person Re-identification” (CVPR 2014)



Person ReID - Common practices
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split person into parts

attention-based approaches

auxiliary information (viewpoint, attributes)

post-processing and training tricks

Current performance: 98.3 on Market-1501 dataset
Cross-dataset / domain adaptation, unsupervised, occluded person ReID

[14] Sun, Y. et al. “Beyond Part Models: Person Retrieval with Refined Part Pooling.” ECCV (2018).
[15] Chen, T. et al. “ABD-Net: Attentive but Diverse Person Re-Identification.” 2019 ICCV) (2019)
[16] Tay, C. et al. “AANet: Attribute Attention Network for Person Re-Identifications.” CVPR (2019)

[17] Zhu, Z. et al “Viewpoint-Aware Loss with Angular Regularization for Person Re-Identification.” AAAI 
(2020).
[18] Luo, Ha. et al. “Bags of Tricks and A Strong Baseline for Deep Person Re-identification.” (2019).

[14]

[15]

[16] [17]

[18]
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Multi-Object Tracking
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Pairwise 
cost matrix

bounding box 
information

Current Frame detectionsTracks in past frame

Compute cost to assign detections to tracks using bounding box / position information

[27] Leal-Taixé, L. et al. “MOTChallenge 2015: Towards a Benchmark for Multi-Target Tracking.” (arXiv, 2015).



Multi-Object Tracking
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bounding box 
information

Missed Detection

Compute cost to assign detections to tracks using bounding box / position information
Also use appearance information, i.e., person ReID

Pairwise 
cost matrix

[27] Leal-Taixé, L. et al. “MOTChallenge 2015: Towards a Benchmark for Multi-Target Tracking.” (arXiv, 2015).



Multi-Object Tracking
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Compute cost to assign detections to tracks using bounding box / position information
Also use appearance information, i.e., person ReID

Often simple ResNet50 trained 
using triplet / cross entropy loss!!

[27] Leal-Taixé, L. et al. “MOTChallenge 2015: Towards a Benchmark for Multi-Target Tracking.” (arXiv, 2015).
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N-way k-shot learning task:

k labelled examples from each of N classes (=> not seen during!) 

Classify disjoint batch of unlabelled examples into one of these N classes. 
Classification accuracy = #correct/#total

Zero- / One- / Few-Shot Learning

16

Few-Shot Learning

[22] Snell, J. et al. “Prototypical networks for few-shot learning.” (NIPS 2017)

[22]

[22]

[22]
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Zero-Shot Learning

from meta information:

[22] Snell, J. et al. “Prototypical networks for few-shot learning.” (NIPS 2017)

[22]

[22]

[22]
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Ever increasing amount of data → use self-supervise, i.e., unlabeled data for pre-training 

Self-Supervised Learning

19

rotation 
prediction

jigg-saw 
puzzle

super-
resolution

define pre-text task for training → get labels for free
evaluation: freeze backbone, add linear classifier and train on downstream task



Self-Supervised Learning - Contrastive Learning
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Contrastive Learning: generate augmentations of the same sample

[28] Chen, Ting et al. “A Simple Framework for Contrastive Learning of Visual Representations.” (arxiv 2020)

[28]



Self-Supervised Learning - Contrastive Learning
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Contrastive Learning: generate augmentations of the same sample
Enforce their embeddings to be similar

[28] Chen, Ting et al. “A Simple Framework for Contrastive Learning of Visual Representations.” (arxiv 2020)

[28]

[28]
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Geo Localization
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Retrieve gallery satellite image that shows same location as query street view

[29] Toker, Aysim et al. “Coming Down to Earth: Satellite-to-Street View Synthesis for Geo-Localization.” (CVPR, 2021)

[29]



Geo Localization
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Retrieve gallery satellite image that shows same location as query street view
Train using retrieval loss, e.g., triplet loss

[29] Toker, Aysim et al. “Coming Down to Earth: Satellite-to-Street View Synthesis for Geo-Localization.” (CVPR, 2021)

[29]
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