

Towards Realistic Evaluation of OOD-Generalization in DML

CVPR Tutorial: Deep Visual Similarity and Metric Learning

Timo Milbich

Technical University of Munich

Learn **representation** $\phi(x)$ which reflects **semantic similarity** $d(\phi(x_i), \phi(x_j))$ within training distribution $\mathcal{X}_{\text{train}}$

Encoder fs.a. ResNet50, Inception-BN

Class 2

Input space (Images)

Embedding space $\Phi=\mathbb{S}^D=\{z\in\mathbb{R}^D\colon \|z\|_2^2=1\}\;.$

Out-Of-Distribution-Generalization:

How well does Φ capture **unseen** classes, **unknown** surroundings, viewpoints, continual **class changes**?

Encoder fs.a. ResNet50, Inception-BN

Input space (Images)

Out-Of-Distribution-Generalization:

How well does Φ capture **unseen** classes, **unknown** surroundings, viewpoints, continual **class changes**?

Out-Of-Distribution-Generalization:

How well does Φ capture **unseen** classes, **unknown** surroundings, viewpoints, continual **class changes**?

Out-Of-Distribution-Generalization:

How well does Φ capture **unseen** classes, **unknown** surroundings, viewpoints, continual **class changes**?

Evaluation needs to consider **broad range of test distributions** and **difficulty**.

Out-Of-Distribution-Generalization:

How well does Φ capture **unseen** classes, **unknown** surroundings, viewpoints, continual class changes?

Evaluation needs to consider **broad range of** test distributions and difficulty.

Input space (Images)

In practice:

- Only consider a **single** data split ($\mathcal{X}_{train}, \mathcal{X}_{test}$) for evaluation
- random, fixed problem difficulty
- Hyperparameter overfitting

Out-Of-Distribution-Generalization:

How well does Φ capture **unseen** classes, **unknown** surroundings, viewpoints, continual class **changes**?

Evaluation needs to consider **broad range of test distributions** and **difficulty**.

Input space (Images)

Towards **realistic evaluation** protocols for OOD Generalization:

• measure, change and control difficulty of learning problems.

eralization: oblems.

Out-Of-Distribution-Generalization:

How well does Φ capture **unseen** classes, **unknown** surroundings, viewpoints, continual class **changes**?

Evaluation needs to consider **broad range of test distributions** and **difficulty**.

Towards **realistic evaluation protocols** for OOD Generalization:

- measure, change and control difficulty of learning problems.
- consider multiple learning problems of different difficulties (i.e. data splits).

eralization: roblems. Ficulties (i.e. data splits).

Out-Of-Distribution-Generalization:

How well does Φ capture **unseen** classes, **unknown** surroundings, viewpoints, continual class **changes**?

Evaluation needs to consider **broad range of test distributions** and **difficulty**.

Input space • (Cars196, Cub200, SOP,...) •

Towards realistic evaluation protocols for OOD Generalization:

- measure, change and control difficulty of learning problems.
- consider **multiple learning problems** of **different difficulties** (i.e. data splits).
- built individually for datasets for better comparison between data splits.

eralization: roblems. f**iculties** (i.e. data splits). between data splits.

Assumptions:

- Use pretrained ImageNet representation (InceptionV3) as metric space \mathcal{M} .
- Data distributions are approximately Gaussian in \mathcal{M} .
- **Iterative Class Swapping**

Iterative Class Removal

¹ Milbich, Roth et al.; NeuRIPS 2021; Characterizing Generalization under Out-Of-Distribution Shifts in Deep Metric Learning

ooDML: Towards Evaluating OOD Generalization

Frechet Inception Distance (FID) to measure distance between data distributions \mathcal{X}_1 and \mathcal{X}_2 .

$$d(\mathcal{X}_1, \mathcal{X}_2) \triangleq \|\mu_{\mathcal{X}_1} - \mu_{\mathcal{X}_2}\|_2^2 + \operatorname{Tr}(\Sigma_{\mathcal{X}_1} + \Sigma_{\mathcal{X}_2} - 2(\Sigma_{\mathcal{X}_1} \Sigma_{\mathcal{X}_2})^{\frac{1}{2}})$$

Frechet Inception Distance (FID) to measure distance between data distributions \mathcal{X}_1 and \mathcal{X}_2 .

$$d(\mathcal{X}_1, \mathcal{X}_2) \triangleq \|\mu_{\mathcal{X}_1} - \mu_{\mathcal{X}_2}\|_2^2 + \operatorname{Tr}(\Sigma_{\mathcal{X}_1} + \Sigma_{\mathcal{X}_2} - 2(\Sigma_{\mathcal{X}_1} \Sigma_{\mathcal{X}_2})^{\frac{1}{2}})$$

Assumptions:

- Use pretrained ImageNet representation (InceptionV3) as metric space \mathcal{M} .
- Data distributions are approximately Gaussian in \mathcal{M} .

Iterative Class Swapping

ooDML: Towards Evaluating OOD Generalization Frechet Inception Distance (FID) to measure distance between data distributions

 \mathcal{X}_1 and \mathcal{X}_2 .

$$d(\mathcal{X}_1, \mathcal{X}_2) \triangleq \|\mu_{\mathcal{X}_1} - \mu_{\mathcal{X}_2}\|_2^2 + \operatorname{Tr}(\Sigma_{\mathcal{X}_1} + \Sigma_{\mathcal{X}_2} - 2(\Sigma_{\mathcal{X}_1} \Sigma_{\mathcal{X}_2})^{\frac{1}{2}})$$

Assumptions:

- Use pretrained ImageNet representation (InceptionV3) as metric space \mathcal{M} .
- Data distributions are approximately Gaussian in \mathcal{M} . •

Iterative Class Swapping

ooDML: Towards Evaluating OOD Generalization Frechet Inception Distance (FID) to measure distance between data distributions

 \mathcal{X}_1 and \mathcal{X}_2 .

$$d(\mathcal{X}_1, \mathcal{X}_2) \triangleq \|\mu_{\mathcal{X}_1} - \mu_{\mathcal{X}_2}\|_2^2 + \operatorname{Tr}(\Sigma_{\mathcal{X}_1} + \Sigma_{\mathcal{X}_2} - 2(\Sigma_{\mathcal{X}_1} \Sigma_{\mathcal{X}_2})^{\frac{1}{2}})$$

Assumptions:

- Use pretrained ImageNet representation (InceptionV3) as metric space \mathcal{M} .
- Data distributions are approximately Gaussian in \mathcal{M} .

Iterative Class Swapping

ooDML: Towards Evaluating OOD Generalization Frechet Inception Distance (FID) to measure distance between data distributions

 \mathcal{X}_1 and \mathcal{X}_2 .

$$d(\mathcal{X}_1, \mathcal{X}_2) \triangleq \|\mu_{\mathcal{X}_1} - \mu_{\mathcal{X}_2}\|_2^2 + \operatorname{Tr}(\Sigma_{\mathcal{X}_1} + \Sigma_{\mathcal{X}_2} - 2(\Sigma_{\mathcal{X}_1} \Sigma_{\mathcal{X}_2})^{\frac{1}{2}})$$

Assumptions:

- Use pretrained ImageNet representation (InceptionV3) as metric space \mathcal{M} .
- Data distributions are approximately Gaussian in \mathcal{M} .

Iterative Class Swapping

Assumptions: Use pretrained ImageNet representation (InceptionV3) as metric space \mathcal{M} .

Data distributions are approximately Gaussian in \mathcal{M} .

Iterative Class Swapping

(1) $\mathcal{X}_{\text{train}}$ default training data, $\mathcal{X}_{\text{test}}$ default test data (2) Identify classes $C_{\text{train}} \subset \mathcal{X}_{\text{train}}$ and $C_{\text{test}} \subset \mathcal{X}_{\text{test}}$ whose exchange will increase FID. $C_{\text{train}}^* = \arg \max \|\mu_{C_{\text{train}}} - \mu_{\mathcal{X}_{\text{train}}}\|_2 - \|\mu_{C_{\text{train}}} - \mu_{\mathcal{X}_{\text{test}}}\|_2$ $C_{\text{train}} \in \mathcal{X}_{\text{train}}$ $C_{\text{test}}^* = \underset{C_{\text{test}} \in \mathcal{X}_{\text{test}}}{\arg \max} \|\mu_{C_{\text{test}}} - \mu_{\mathcal{X}_{\text{test}}}\|_2 - \|\mu_{C_{\text{test}}} - \mu_{\mathcal{X}_{\text{train}}}\|_2$ (1) Swap classes C_{train} and C_{test} between $\mathcal{X}_{\text{train}}$ and $\mathcal{X}_{\text{test}}$.

¹ Milbich, Roth et al.; NeuRIPS 2021; Characterizing Generalization under Out-Of-Distribution Shifts in Deep Metric Learning

ooDML: Towards Evaluating OOD Generalization

Frechet Inception Distance (FID) to measure distance between data distributions $|\mathcal{X}_1$ and \mathcal{X}_2 .

 $d(\mathcal{X}_1, \mathcal{X}_2) \triangleq \|\mu_{\mathcal{X}_1} - \mu_{\mathcal{X}_2}\|_2^2 + \operatorname{Tr}(\Sigma_{\mathcal{X}_1} + \Sigma_{\mathcal{X}_2} - 2(\Sigma_{\mathcal{X}_1} \Sigma_{\mathcal{X}_2})^{\frac{1}{2}})$

Train distribution

Frechet Inception Distance (FID) to measure distance between data distributions \mathcal{X}_1 and \mathcal{X}_2 . Train distribution

$$d(\mathcal{X}_1, \mathcal{X}_2) \triangleq \|\mu_{\mathcal{X}_1} - \mu_{\mathcal{X}_2}\|_2^2 + \operatorname{Tr}(\Sigma_{\mathcal{X}_1} + \Sigma_{\mathcal{X}_2} - 2(\Sigma_{\mathcal{X}_1} \Sigma_{\mathcal{X}_2})^{\frac{1}{2}})$$

Assumptions:

- Use pretrained ImageNet representation (InceptionV3) as metric space \mathcal{M} .
- Data distributions are approximately Gaussian in \mathcal{M} .

Iterative Class Swapping

¹ Milbich, Roth et al.; NeuRIPS 2021; Characterizing Generalization under Out-Of-Distribution Shifts in Deep Metric Learning

ooDML: Towards Evaluating OOD Generalization

Frechet Inception Distance (FID) to measure distance between data distributions \mathcal{X}_1 and \mathcal{X}_2 .

$$d(\mathcal{X}_1, \mathcal{X}_2) \triangleq \|\mu_{\mathcal{X}_1} - \mu_{\mathcal{X}_2}\|_2^2 + \operatorname{Tr}(\Sigma_{\mathcal{X}_1} + \Sigma_{\mathcal{X}_2} - 2(\Sigma_{\mathcal{X}_1} \Sigma_{\mathcal{X}_2})^{\frac{1}{2}})$$

Assumptions:

- Use pretrained ImageNet representation (InceptionV3) as metric space \mathcal{M} .
- Data distributions are approximately Gaussian in \mathcal{M} .

Iterative Class Swapping

¹ Milbich, Roth et al.; NeuRIPS 2021; Characterizing Generalization under Out-Of-Distribution Shifts in Deep Metric Learning

Train distribution

Frechet Inception Distance (FID) to measure distance between data distributions \mathcal{X}_1 and \mathcal{X}_2 .

$$d(\mathcal{X}_1, \mathcal{X}_2) \triangleq \|\mu_{\mathcal{X}_1} - \mu_{\mathcal{X}_2}\|_2^2 + \operatorname{Tr}(\Sigma_{\mathcal{X}_1} + \Sigma_{\mathcal{X}_2} - 2(\Sigma_{\mathcal{X}_1} \Sigma_{\mathcal{X}_2})^{\frac{1}{2}})$$

Assumptions:

- Use pretrained ImageNet representation (InceptionV3) as metric space \mathcal{M} .
- Data distributions are approximately Gaussian in \mathcal{M} .

Iterative Class Swapping

Iterative Class Removal

Frechet Inception Distance (FID) to measure distance between data distributions \mathcal{X}_1 and \mathcal{X}_2 .

$$d(\mathcal{X}_1, \mathcal{X}_2) \triangleq \|\mu_{\mathcal{X}_1} - \mu_{\mathcal{X}_2}\|_2^2 + \operatorname{Tr}(\Sigma_{\mathcal{X}_1} + \Sigma_{\mathcal{X}_2} - 2(\Sigma_{\mathcal{X}_1} \Sigma_{\mathcal{X}_2})^{\frac{1}{2}})$$

Assumptions:

- Use pretrained ImageNet representation (InceptionV3) as metric space \mathcal{M} .
- Data distributions are approximately Gaussian in \mathcal{M} .

Iterative Class Swapping

Iterative Class Removal

Train distribution

Frechet Inception Distance (FID) to measure distance between data distributions \mathcal{X}_1 and \mathcal{X}_2 .

$$d(\mathcal{X}_1, \mathcal{X}_2) \triangleq \|\mu_{\mathcal{X}_1} - \mu_{\mathcal{X}_2}\|_2^2 + \operatorname{Tr}(\Sigma_{\mathcal{X}_1} + \Sigma_{\mathcal{X}_2} - 2(\Sigma_{\mathcal{X}_1} \Sigma_{\mathcal{X}_2})^{\frac{1}{2}})$$

Assumptions:

- Use pretrained ImageNet representation (InceptionV3) as metric space \mathcal{M} .
- Data distributions are approximately Gaussian in \mathcal{M} .

Iterative Class Swapping

Iterative Class Removal

Train distribution

Frechet Inception Distance (FID) to measure distance between data distributions \mathcal{X}_1 and \mathcal{X}_2 .

$$d(\mathcal{X}_1, \mathcal{X}_2) \triangleq \|\mu_{\mathcal{X}_1} - \mu_{\mathcal{X}_2}\|_2^2 + \operatorname{Tr}(\Sigma_{\mathcal{X}_1} + \Sigma_{\mathcal{X}_2} - 2(\Sigma_{\mathcal{X}_1} \Sigma_{\mathcal{X}_2})^{\frac{1}{2}})$$

Assumptions:

- Use pretrained ImageNet representation (InceptionV3) as metric space \mathcal{M} .
- Data distributions are approximately Gaussian in \mathcal{M} .

Iterative Class Swapping

Iterative Class Removal

¹ Milbich, Roth et al.; NeuRIPS 2021; Characterizing Generalization under Out-Of-Distribution Shifts in Deep Metric Learning

Train distribution

Frechet Inception Distance (FID) to measure distance between data distributions \mathcal{X}_1 and \mathcal{X}_2 .

$$d(\mathcal{X}_1, \mathcal{X}_2) \triangleq \|\mu_{\mathcal{X}_1} - \mu_{\mathcal{X}_2}\|_2^2 + \operatorname{Tr}(\Sigma_{\mathcal{X}_1} + \Sigma_{\mathcal{X}_2} - 2(\Sigma_{\mathcal{X}_1} \Sigma_{\mathcal{X}_2})^{\frac{1}{2}})$$

Assumptions:

- Use pretrained ImageNet representation (InceptionV3) as metric space \mathcal{M} .
- Data distributions are approximately Gaussian in \mathcal{M} .

Iterative Class Swapping

Iterative Class Removal

¹ Milbich, Roth et al.; NeuRIPS 2021; Characterizing Generalization under Out-Of-Distribution Shifts in Deep Metric Learning

Train distribution

Frechet Inception Distance (FID) to measure distance between data distributions \mathcal{X}_1 and \mathcal{X}_2 .

$$d(\mathcal{X}_1, \mathcal{X}_2) \triangleq \|\mu_{\mathcal{X}_1} - \mu_{\mathcal{X}_2}\|_2^2 + \operatorname{Tr}(\Sigma_{\mathcal{X}_1} + \Sigma_{\mathcal{X}_2} - 2(\Sigma_{\mathcal{X}_1} \Sigma_{\mathcal{X}_2})^{\frac{1}{2}})$$

Assumptions:

- Use pretrained ImageNet representation (InceptionV3) as metric space \mathcal{M} .
- Data distributions are approximately Gaussian in \mathcal{M} .

Iterative Class Swapping

Iterative Class Removal

Train distribution

$d(\mathcal{X}_1, \mathcal{X}_2) \triangleq \|\mu_{\mathcal{X}_1} - \mu_{\mathcal{X}_2}\|_2^2 + \operatorname{Tr}(\Sigma_{\mathcal{X}_1} + \Sigma_{\mathcal{X}_2} - 2(\Sigma_{\mathcal{X}_1} \Sigma_{\mathcal{X}_2})^{\frac{1}{2}})$ Assumptions:

- Use pretrained ImageNet representation (InceptionV3) as metric space \mathcal{M} .
- Data distributions are approximately Gaussian in \mathcal{M} .

Iterative Class Swapping

 \mathcal{X}_1 and \mathcal{X}_2 .

Iterative Class Removal

(1)
$$\mathcal{X}_{train}$$
 training data after swapping, \mathcal{X}_{test} test data after swapping.
(2) Identify class $C_{train} \subset \mathcal{X}_{train}$ closest to test distribution \mathcal{X}_{test} and vice versal
 $C_{train}^* = \underset{C_{train} \in \mathcal{X}_{train}}{\arg \max} \|\mu_{C_{train}} - \mu_{\mathcal{X}_{test}}\|_2$
 $C_{test}^* = \underset{C_{test} \in \mathcal{X}_{test}}{\arg \max} \|\mu_{C_{test}} - \mu_{\mathcal{X}_{train}}\|_2$
(1) Remove classes C_{train} and C_{test} from \mathcal{X}_{train} and \mathcal{X}_{test} .

¹ Milbich, Roth et al.; NeuRIPS 2021; Characterizing Generalization under Out-Of-Distribution Shifts in Deep Metric Learning

ooDML: Towards Evaluating OOD Generalization

Frechet Inception Distance (FID) to measure distance between data distributions

Data distributions are approximately Gaussian in \mathcal{M} .

ooDML: Towards Evaluating OOD Generalization

Frechet Inception Distance (FID) to measure distance between data distributions \mathcal{X}_1 and \mathcal{X}_2 .

$$d(\mathcal{X}_1, \mathcal{X}_2) \triangleq \|\mu_{\mathcal{X}_1} - \mu_{\mathcal{X}_2}\|_2^2 + \operatorname{Tr}(\Sigma_{\mathcal{X}_1} + \Sigma_{\mathcal{X}_2} - 2(\Sigma_{\mathcal{X}_1} \Sigma_{\mathcal{X}_2})^{\frac{1}{2}})$$

Assumptions:

- Use pretrained ImageNet representation (InceptionV3) as metric space \mathcal{M} .

Iterative Class Swapping

Iterative Class Removal

¹ Milbich, Roth et al.; NeuRIPS 2021; Characterizing Generalization under Out-Of-Distribution Shifts in Deep Metric Learning

Train distribution

Frechet Inception Distance (FID) t \mathcal{X}_1 and \mathcal{X}_2 .

$$d(\mathcal{X}_1, \mathcal{X}_2) \triangleq \|\mu_{\mathcal{X}_1} - \mu_{\mathcal{X}_2}\|_2^2 + \operatorname{Tr} \xi$$

Assumptions:

- Use pretrained ImageNet r ^C
- Data distributions are appr

Iterative Class Swapping Iterative Class Removal

Difficulty (FID)

Procedures is also applicable to other fields and domains!

Assessing Generalization using ooDML benchmark

Benchmark learning concepts:

- performance monotonically decreases
- S2SD most robust too OOD shifts
- proxy-learning seems to lacks behind on SOP

Assessing Generalization using ooDML benchmark

Generic representations for DML:

- neric representations for DML: CLIP, Vision Transformer (huge pretraining+architecture, Surprisingly strong on some datasets
- only explicit adaptation to training data closer to test distributions provides reliable generalization

Assessing Generalization using ooDML benchmark

Introducing Few-shot Learning to DML:

- even few examples of unseen test distribution yield consistent improvement of OOD generalization.
- gains across all evaluated DML methods

Questions?