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Evaluation needs to consider broad range of 
test distributions and difficulty. ?
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In practice: 
● Only consider a single data split (         ,        ) for evaluation
● random, fixed problem difficulty
● Hyperparameter overfitting
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Towards realistic evaluation protocols for OOD Generalization:
● measure, change and control difficulty of learning problems. 
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Towards realistic evaluation protocols for OOD Generalization:
● measure, change and control difficulty of learning problems.
● consider multiple learning problems of different difficulties (i.e. data splits). 
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Input space 
(Cars196, Cub200, SOP,...)

Towards realistic evaluation protocols for OOD Generalization:
● measure, change and control difficulty of learning problems.
● consider multiple learning problems of different difficulties (i.e. data splits).
● built individually for datasets for better comparison between data splits.  
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How well does capture unseen classes, unknown
surroundings, viewpoints, continual class changes?
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Frechet Inception Distance (FID) to measure distance between data distributions
and      .  

Assumptions:
● Use pretrained ImageNet representation (InceptionV3) as metric space      .
● Data distributions are approximately Gaussian in      .
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Iterative Class Removal 
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ooDML: Towards Evaluating OOD Generalization

Default train-
test split1 Milbich, Roth et al.; NeuRIPS 2021; Characterizing Generalization under Out-Of-Distribution Shifts in Deep Metric Learning
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Assumptions:
● Use pretrained ImageNet representation (InceptionV3) as metric space      .
● Data distributions are approximately Gaussian in      .

(1) training data after swapping,           test data after swapping.

(2) Identify class                         closest to test distribution           and vice versa.

(1) Remove classes            and          from           and         .
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Assumptions:
● Use pretrained ImageNet representation (InceptionV3) as metric space      .
● Data distributions are approximately Gaussian in      .

Frechet Inception Distance (FID) to measure distance between data distributions
and      .  
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Test distribution

Iterative Class Swapping

Iterative Class Removal 

Difficulty (FID)

Procedures is also applicable 
to other fields and domains!



Assessing Generalization using ooDML benchmark

Benchmark learning concepts:
● performance monotonically decreases
● S2SD most robust too OOD shifts
● proxy-learning seems to lacks behind

on SOP
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Generic representations for DML:
● CLIP, Vision Transformer (huge pretraining+architecture, 

text labels) performance surprisingly strong on some 
datasets

● only explicit adaptation to training data closer to test 
distributions provides reliable generalization

Assessing Generalization using ooDML benchmark
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Introducing Few-shot Learning to DML:
● even few examples of unseen test distribution 

yield consistent improvement of OOD 
generalization.

● gains across all evaluated DML methods

Assessing Generalization using ooDML benchmark
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Questions?


