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Visual Similarity Learning

Out-Of-Distribution-Generalization:
How well does & capture unseen classes, unknown surroundings,
viewpoints, continual class changes? pgp—
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Visual Similarity Learning

Out-Of-Distribution-Generalization:

How well does & capture unseen classes, unknown
surroundings, viewpoints, continual class changes?

Evaluation needs to consider broad range of

test distributions and difficulty.
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Visual Similarity Learning

Out-Of-Distribution-Generalization:
How well does & capture unseen classes, unknown
surroundings, viewpoints, continual class changes?

Evaluation needs to consider broad range of

. Towards realistic evaluation protocols for OOD Generalization:
Input space (Images) e measure, change and control difficulty of learning problems.
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Visual Similarity Learning
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. Towards realistic evaluation protocols for OOD Generalization:

Input space ® measure, change and control difficulty of learning problems.

(Cars196, Cub200, SOP,...) e consider multiple learning problems of different difficulties (i.e. data splits).
® built individually for datasets for better comparison between data splits.




ooDML: Towards Evaluating OOD Generalization

Frechet Inception Distance (FID) to measure distance between data distributions
X1 and &
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Assessing Generalization using ooDML benchmark
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Assessing Generalization using ooDML benchmark

Generic representations for DML:

CLIP, Vision Transformer (huge pretraining+architecture, _

text labels) performance surprisingly strong on some
datasets

only explicit adaptation to training data closer to test
distributions provides reliable generalization
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Assessing Generalization using ooDML benchmark
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