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Evaluation
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Evaluation Protocols
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[35] Liu, Z. et al. “Deepfashion: Powering robust clothes recognition and retrieval with rich 
annotations” (CVPR 2016)



Retrieval performance: Recall@k (R@k)30

at least one sample of same class among top k neighbors: R@k = 1

Different k for different datasets

Evaluation

4

R@1 = 1

R@1 = 0

R@1 = 0.5

[35] Liu, Z. et al. “Deepfashion: Powering robust clothes recognition and retrieval with rich annotations.” (CVPR 2016)
[30] Jegou, H et al. “Product quantization for nearest neighbor search.” (tPAMI 2011)



Evaluation Protocols
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[35] Liu, Z. et al. “Deepfashion: Powering robust clothes recognition and retrieval with rich 
annotations” (CVPR 2016)



Clustering performance: NMI31 (only for same query and gallery set)

k-means clustering on embedding vectors

Evaluation
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[5]

[35] Liu, Z. et al. “Deepfashion: Powering robust clothes recognition and retrieval with rich annotations” (CVPR 2016)
[31] ]McDaid, A. et al. “Normalized mutual information to evaluate overlapping community finding algorithms.” (arxiv 2011)

Normalized Mutual Information between ground truth and clustering



Datasets
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Most Common Datasets
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CUB-200-201132 Cars19633 Stanford Online Products34 Inshop35

[32] Wah, C. et al.”The Caltech-UCSD Birds-200-2011 Dataset.” (Technical Report 2011)
[33] Krause, J. et al. “3d object representations for fine-grained categorization.” (Workshop on 3D Representation and Recognition, 2013.)
[34] Song, H. et al. “Deep metric learning via lifted structured feature embedding.” (CVPR 2016)
[35] Liu, Z. et al. “Deepfashion: Powering robust clothes recognition and retrieval with rich annotations” (CVPR 2016)

11,788 images
200 classes (avg 58 /class)

first half for training, last half for testing
evaluation set = test set

16,185 images
196 classes (avg 82 /class)

120,053 images
120,053 classes (avg 5 /class)

52,712 images
7,982 classes (avg 5 /class)



Current SOTA Performance 
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[10] 

Intra-Batch512

[10] Seidenschwarz, J. et al. “Learning Intra-Batch Connections for Deep Metric Learning.” ICML (2021).



Current SOTA Performance 
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Fewer works on Inshop dataset as other evaluation protocol

[10] 

[10] 

Intra-Batch512

[10] Seidenschwarz, J. et al. “Learning Intra-Batch Connections for Deep Metric Learning.” ICML (2021).

Intra-Batch512



New Transformer-Based Works

11[38] Ermolov, A.et al. “Hyperbolic Vision Transformers: Combining Improvements in Metric Learning” (CVPR 2022)
[39] Ramzi, E. et al. “Robust and Decomposable Average Precision for Image Retrieval” (NeurIPS 2021)

[38]

[39]
[40]

CUB-200-2011 Cars196 SOP InShop
R@1 R@2 R@4 R@8 NMI R@1 R@2 R@4 R@8 NMI R@1 R@10 R@100 NMI R@1 R@10 R@20 R@40

IntraBtach (R50) 70.3 80.3 87.6 92.7 74.0 88.1 93.3 96.2 98.2 74.8 81.4 91.3 95.9 92.6 92.8 98.5 99.1 99.2



Standard Protocol
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Standard Protocol - Data Augmentation

Testing3: Resize (smaller side 256	) CenterCrop (to 227)

13

Training3: Crop (scale, aspect ratio, 227) and Random horizontal flip

[3] Kim, S. et al. “Proxy Anchor Loss for Deep Metric Learning.” CVPR (2020)



Standard Protocol - Training Pipeline 
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Class-Balanced 
Sampling36, …

[36] Zhai, A. and Wu, H. Classification is a strong baseline for deep metric learning. (BMVC 2019).



Standard Protocol - Training Pipeline 
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CNN

BN-Inception / 
ResNet

Class-Balanced 
Sampling36, …

[12]

[10] Seidenschwarz, J. et al “Learning Intra-Batch Connections for Deep Metric Learning.” ICML (2021).
[12] Roth, K. et al. “Revisiting Training Strategies and Generalization Performance in Deep Metric Learning.” ICML (2020)

[10]



Standard Protocol - Training Pipeline 
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CNN

BN-Inception / 
ResNet

FC

Embedding 
dimension 512

loss optimizer

Adam, RMSProp, 
RAdam,…

Class-Balanced 
Sampling36, …

different learning 
rates

Ensure fair comparison especially backbone and embedding dimension



Tricks to improve performance
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Larger corp6

227	x	227	→
256	x	256

Tricks to improve performance

19[6] Teh, E. W. et al. “ProxyNCA++: Revisiting and Revitalizing Proxy Neighborhood Component Analysis.” ECCV (2020)



Tricks to improve performance

20

[10]

Larger 
embedding 
dimension

[10] Seidenschwarz, J. et al “Learning Intra-Batch Connections for Deep Metric Learning.” ICML (2021).

Larger corp6

227	x	227	→
256	x	256



Tricks to improve performance

21

Larger 
embedding 
dimension

[10] Seidenschwarz, J. et al “Learning Intra-Batch Connections for Deep Metric Learning.” ICML (2021).

[10]

Larger corp6

227	x	227	→
256	x	256



Tricks to improve performance
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Temperature 
scaling

[6] Teh, E. W. et al. “ProxyNCA++: Revisiting and Revitalizing Proxy Neighborhood Component Analysis.” ECCV (2020)

[6]

Larger 
embedding 
dimension

512	→	1024

Larger corp6

227	x	227	→
256	x	256



Temperature
scaling

Tricks to improve performance

23[6] Teh, E. W. et al. “ProxyNCA++: Revisiting and Revitalizing Proxy Neighborhood Component Analysis.” ECCV (2020)

[6]
Larger 

embedding 
dimension

512	→	1024

Larger corp6

227	x	227	→
256	x	256



Tricks to improve performance
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Average vs. 
Max Pooling

[8] https://medium.com/@bdhuma/which-pooling-method-is-better-maxpooling-vs-minpooling-vs-average-pooling-95fb03f45a9

[8]

Larger 
embedding 
dimension

512	→	1024

Larger corp6

227	x	227	→
256	x	256

Temperatur 
scaling

https://medium.com/@bdhuma/which-pooling-method-is-better-maxpooling-vs-minpooling-vs-average-pooling-95fb03f45a9


Tricks to improve performance

25[6] Teh, E. W. et al. “ProxyNCA++: Revisiting and Revitalizing Proxy Neighborhood Component Analysis.” ECCV (2020)

[6]

Larger 
embedding 
dimension

512	→	1024

Larger corp6

227	x	227	→
256	x	256

Average vs. 
Max Pooling

Temperatur 
scaling



Tricks to improve performance

26[9] Elezi, I. et al. “The Group Loss++: A deeper look into group loss for deep metric learning”, PAMI (2022/03)

[9]

Average vs. 
Max Pooling

Larger 
embedding 
dimension

512	→	1024

Larger corp6

227	x	227	→
256	x	256

Temperatur 
scaling



Tricks to improve performance
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𝜷-normalization

[9] Elezi, I. et al. “The Group Loss++: A deeper look into group loss for deep metric learning”, PAMI (2022/03)

[9]

Larger 
embedding 
dimension

512	→	1024

Larger corp6

227	x	227	→
256	x	256

Average vs. 
Max Pooling

Temperatur 
scaling



Tricks to improve performance
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𝜷-
normalization

[9] Elezi, I. et al. “The Group Loss++: A deeper look into group loss for deep metric learning”, PAMI (2022/03)

Larger 
embedding 
dimension

512	→	1024

Larger corp6

227	x	227	→
256	x	256

Average vs. 
Max Pooling

Temperatur 
scaling



Tricks to improve performance
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𝜷-
normalization

[9] Elezi, I. et al. “The Group Loss++: A deeper look into group loss for deep metric learning”, PAMI (2022/03)
[37] Zhong, Z. et al. “Re-ranking Person Re-identification with k-reciprocal Encoding” (CVPR 2017)

Larger 
embedding 
dimension

512	→	1024

Larger corp6

227	x	227	→
256	x	256

Re-Ranking

[9]

[37]

Average vs. 
Max Pooling

Temperatur 
scaling



Tricks to improve performance

30

𝜷-
normalization

[9] Elezi, I. et al. “The Group Loss++: A deeper look into group loss for deep metric learning”, PAMI (2022/03)
[37] Zhong, Z. et al. “Re-ranking Person Re-identification with k-reciprocal Encoding” (CVPR 2017)

Larger 
embedding 
dimension

512	→	1024

Larger corp6

227	x	227	→
256	x	256

Re-Ranking

Flip-Evaluation

[9]

Average vs. 
Max Pooling

Temperatur 
scaling



Tricks to improve performance
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𝜷-
normalization

[9] Elezi, I. et al. “The Group Loss++: A deeper look into group loss for deep metric learning”, PAMI (2022/03)
[37] Zhong, Z. et al. “Re-ranking Person Re-identification with k-reciprocal Encoding” (CVPR 2017)

Larger 
embedding 
dimension

512	→	1024

Larger corp6

227	x	227	→
256	x	256

Flip-
Evaluation Ensure fair evaluation!

Average vs. 
Max Pooling

Temperatur 
scaling

Re-Ranking



Questioning evaluation protocol
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Are current evaluation metrics good?

33

[11]

Varying results NMI 
(clustering and seeds)

NMI and R@k not robust

Are there better evaluation metrics?

[11] Musgrave, K. et al “A Metric Learning Reality Check.” ECCV (2020).



R-Presicion

34

R = total number of references for given query
r = number of references of same class in R-NN set

3/5

3/5

[11] Musgrave, K. et al “A Metric Learning Reality Check.” ECCV (2020).



MAP@R

35

P@1 = 1

P@1 = 0

P@2 = 0

P@2 = 0

[11] Musgrave, K. et al “A Metric Learning Reality Check.” ECCV (2020).



Current vs. new evaluation metrics

36

R-Precision: 

[11]

MAP@R:

R-Precision and MAP@R more robust

[11] Musgrave, K. et al “A Metric Learning Reality Check.” ECCV (2020).



Training with Test set Feedback

37

Training classes Test classes
evaluation 

during training

OVERFITTING TO TEST CLASSES



Training with Test set Feedback
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Training classes Test classes

OVERFITTING TO TEST CLASSES

evaluation 
during training

Test classesonly during 
test timeTraining classes

Don’t use test set feedback!



Metric Learning Reality Check

39[11] Musgrave, K. et al “A Metric Learning Reality Check.” ECCV (2020).

[11]



Metric Learning Reality Check
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CUB-200-2011
[11]

year loss

[11] Musgrave, K. et al “A Metric Learning Reality Check.” ECCV (2020).



Metric Learning Reality Check
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CUB-200-2011

[11] Musgrave, K. et al “A Metric Learning Reality Check.” ECCV (2020).

[11]



Are standardized training strategies fair?

42

● Does every method require the same learning rate, weight decay, and 
batch size to perform best?

● Should we not use current best performing optimizers and augmentation
techniques but stick with “old” stuff?

Optimally: report standard protocol as well as the best you can get!

https://github.com/KevinMusgrave/powerful-benchmarker

https://github.com/KevinMusgrave/pytorch-metric-learning

Take current SOTA results with a grain of salt

https://github.com/KevinMusgrave/powerful-benchmarker
https://github.com/KevinMusgrave/pytorch-metric-learning
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