
Best Practice DML

1

Evaluation

Evaluation Protocols

Evaluation

Retrieval performance: Recall@k (R@k)³⁰

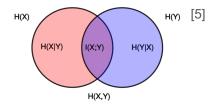
at least one sample of same class among top k neighbors: R@k = 1

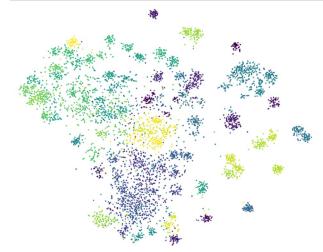
Different k for different datasets

[35] Liu, Z. et al. "Deepfashion: Powering robust clothes recognition and retrieval with rich annotations." (CVPR 2016) [30] Jegou, H et al. "Product quantization for nearest neighbor search." (tPAMI 2011)

Evaluation Protocols

query set


gallery set


Evaluation

Clustering performance: NMI³¹ (only for same query and gallery set)

k-means clustering on embedding vectors
Normalized Mutual Information between ground truthY and clustering \tilde{Y}

$$NMI(Y, \tilde{Y}) = \frac{2I(Y, \tilde{Y})}{H(Y)H(\tilde{Y})}$$

Datasets

Most Common Datasets

CUB-200-201132

Cars19633

11,788 images

16,185 images 196 classes (avg 82 / class)

Stanford Online Products³⁴

120,053 images 120,053 classes (avg 5 / class) Inshop³⁵

52,712 images

7,982 classes (avg 5 / class)

200 classes (avg 58 / class)

first half for training, last half for testing

evaluation set = test set

[32] Wah, C. et al."The Caltech-UCSD Birds-200-2011 Dataset." (Technical Report 2011) [33] Krause, J. et al. "3d object representations for fine-grained categorization." (Workshop on 3D Representation and Recognition, 2013.) [34] Song, H. et al. "Deep metric learning via lifted structured feature embedding." (CVPR 2016) [35] Liu, Z. et al. "Deepfashion: Powering robust clothes recognition and retrieval with rich annotations" (CVPR 2016)

Current SOTA Performance

			CU	B-200-2	011			(CARS19	6		Stanford Online Products			ts
Method	BB	R@1	R@2	R@4	R@8	NMI	R@1	R@2	R@4	R@8	NMI	R@1	R@10	R@100	NMI
Triplet ⁶⁴ (Schroff et al., 2015) CVPR15	G	42.5	55	66.4	77.2	55.3	51.5	63.8	73.5	82.4	53.4	66.7	82.4	91.9	89.5
Npairs ⁶⁴ (Sohn, 2016) NeurIPS16	G	51.9	64.3	74.9	83.2	60.2	68.9	78.9	85.8	90.9	62.7	66.4	82.9	92.1	87.9
Deep Spectral ⁵¹² (Law et al., 2017) ICML17	BNI	53.2	66.1	76.7	85.2	59.2	73.1	82.2	89.0	93.0	64.3	67.6	83.7	93.3	89.4
Angular Loss ⁵¹² (Wang et al., 2017) <i>ICCV17</i>	G	54.7	66.3	76	83.9	61.1	71.4	81.4	87.5	92.1	63.2	70.9	85.0	93.5	88.6
Proxy-NCA ⁶⁴ (Movshovitz-Attias et al., 2017) <i>ICCV17</i>	BNI	49.2	61.9	67.9	72.4	59.5	73.2	82.4	86.4	88.7	64.9	73.7	-	-	90.6
Margin Loss ¹²⁸ (Manmatha et al., 2017) ICCV17	R50	63.6	74.4	83.1	90.0	69.0	79.6	86.5	91.9	95.1	69.1	72.7	86.2	93.8	90.7
Hierarchical triplet ⁵¹² (Ge et al., 2018) ECCV18	BNI	57.1	68.8	78.7	86.5	-	81.4	88.0	92.7	95.7	-	74.8	88.3	94.8	-
ABE ⁵¹² (Kim et al., 2018) ECCV18	G	60.6	71.5	79.8	87.4	-	85.2	90.5	94.0	96.1	-	76.3	88.4	94.8	-
Normalized Softmax ⁵¹² (Zhai & Wu, 2019) BMVC19	R50	61.3	73.9	83.5	90.0	69.7	84.2	90.4	94.4	96.9	74.0	78.2	90.6	96.2	91.0
RLL-H ⁵¹² (Wang et al., 2019b) CVPR19	BNI	57.4	69.7	79.2	86.9	63.6	74	83.6	90.1	94.1	65.4	76.1	89.1	95.4	89.7
Multi-similarity ⁵¹² (Wang et al., 2019a) CVPR19	BNI	65.7	77.0	86.3	91.2	-	84.1	90.4	94.0	96.5	-	78.2	90.5	96.0	-
Relational Knowledge ⁵¹² (Park et al., 2019a) CVPR19	G	61.4	73.0	81.9	89.0	-	82.3	89.8	94.2	96.6	-	75.1	88.3	95.2	-
Divide and Conquer ¹⁰²⁸ (Sanakoyeu et al., 2019) CVPR19	R50	65.9	76.6	84.4	90.6	69.6	84.6	90.7	94.1	96.5	70.3	75.9	88.4	94.9	90.2
SoftTriple Loss ⁵¹² (Qian et al., 2019) <i>ICCV19</i>	BNI	65.4	76.4	84.5	90.4	69.3	84.5	90.7	94.5	96.9	70.1	78.3	90.3	95.9	92.0
HORDE ⁵¹² (Jacob et al., 2019) <i>ICCV19</i>	BNI	66.3	76.7	84.7	90.6	-	83.9	90.3	94.1	96.3	-	80.1	91.3	96.2	-
MIC ¹²⁸ (Brattoli et al., 2019) <i>ICCV19</i>	R50	66.1	76.8	85.6	-	69.7	82.6	89.1	93.2	-	68.4	77.2	89.4	95.6	90.0
Easy triplet mining ⁵¹² (Xuan et al., 2020b) WACV20	R50	64.9	75.3	83.5	-	-	82.7	89.3	93.0	-	-	78.3	90.7	96.3	-
Group Loss ¹⁰²⁴ (Elezi et al., 2020) ECCV20	BNI	65.5	77.0	85.0	91.3	69.0	85.6	91.2	94.9	97.0	72.7	75.1	87.5	94.2	90.8
Proxy NCA++ ⁵¹² (Teh et al., 2020) ECCV20	R50	66.3	77.8	87.7	91.3	71.3	84.9	90.6	94.9	97.2	71.5	79.8	91.4	96.4	-
DiVA ⁵¹² (Milbich et al., 2020) ECCV20	R50	69.2	79.3	-	-	71.4	87.6	92.9	-	-	72.2	79.6	-	-	90.6
PADS ¹²⁸ (Roth et al., 2020) CVPR20	R50	67.3	78.0	85.9	-	69.9	83.5	89.7	93.8	-	68.8	76.5	89.0	95.4	89.9
Proxy Anchor ⁵¹² (Kim et al., 2020) CVPR20	BNI	68.4	79.2	86.8	91.6	-	86.1	91.7	95.0	97.3	-	79.1	90.8	96.2	-
Proxy Anchor ⁵¹² (Kim et al., 2020) CVPR20	R50	69.7	80.0	87.0	92.4	-	87.7	92.9	95.8	97.9	-	80.0	91.7	96.6	-
Proxy Few ⁵¹² (Zhu et al., 2020) NeurIPS20	BNI	66.6	77.6	86.4	-	69.8	85.5	91.8	95.3	-	72.4	78.0	90.6	96.2	90.2
Intra-Batch ⁵¹²	R50	70.3	80.3	87.6	92.7	74.0	88.1	93.3	96.2	98.2	74.8	81.4	91.3	95.9	92.6

Current SOTA Performance

			CU	B-200-2	011			(CARS19	6		Sta	nford Onl	ine Produc	ts
Method	BB	R@1	R@2	R@4	R@8	NMI	R@1	R@2	R@4	R@8	NMI	R@1	R@10	R@100	NMI
Triplet ⁶⁴ (Schroff et al., 2015) CVPR15	G	42.5	55	66.4	77.2	55.3	51.5	63.8	73.5	82.4	53.4	66.7	82.4	91.9	89.5
Npairs ⁶⁴ (Sohn, 2016) NeurIPS16	G	51.9	64.3	74.9	83.2	60.2	68.9	78.9	85.8	90.9	62.7	66.4	82.9	92.1	87.9
Deep Spectral ⁵¹² (Law et al., 2017) ICML17	BNI	53.2	66.1	76.7	85.2	59.2	73.1	82.2	89.0	93.0	64.3	67.6	83.7	93.3	89.4
Angular Loss ⁵¹² (Wang et al., 2017) ICCV17	G	54.7	66.3	76	83.9	61.1	71.4	81.4	87.5	92.1	63.2	70.9	85.0	93.5	88.6
Proxy-NCA ⁶⁴ (Movshovitz-Attias et al., 2017) ICCV17	BNI	49.2	61.9	67.9	72.4	59.5	73.2	82.4	86.4	88.7	64.9	73.7	-	-	90.6
Margin Loss ¹²⁸ (Manmatha et al., 2017) ICCV17	R50	63.6	74.4	83.1	90.0	69.0	79.6	86.5	91.9	95.1	69.1	72.7	86.2	93.8	90.7
Hierarchical triplet ⁵¹² (Ge et al., 2018) ECCV18	BNI	57.1	68.8	78.7	86.5	-	81.4	88.0	92.7	95.7	-	74.8	88.3	94.8	-
ABE ⁵¹² (Kim et al., 2018) ECCV18	G	60.6	71.5	79.8	87.4	-	85.2	90.5	94.0	96.1	-	76.3	88.4	94.8	1.0
Normalized Softmax ⁵¹² (Zhai & Wu, 2019) BMVC19	R50	61.3	73.9	83.5	90.0	69.7	84.2	90.4	94.4	96.9	74.0	78.2	90.6	96.2	91.0
RLL-H ⁵¹² (Wang et al., 2019b) CVPR19	BNI	57.4	69.7	79.2	86.9	63.6	74	83.6	90.1	94.1	65.4	76.1	89.1	95.4	89.7
Multi-similarity ⁵¹² (Wang et al., 2019a) CVPR19	BNI	65.7	77.0	86.3	91.2	-	84.1	90.4	94.0	96.5	-	78.2	90.5	96.0	-
Relational Knowledge ⁵¹² (Park et al., 2019a) CVPR19	G	61.4	73.0	81.9	89.0	-	82.3	89.8	94.2	96.6	-	75.1	88.3	95.2	-
Divide and Conquer ¹⁰²⁸ (Sanakoyeu et al., 2019) CVPR19	R50	65.9	76.6	84.4	90.6	69.6	84.6	90.7	94.1	96.5	70.3	75.9	88.4	94.9	90.2
SoftTriple Loss ⁵¹² (Qian et al., 2019) ICCV19	BNI	65.4	76.4	84.5	90.4	69.3	84.5	90.7	94.5	96.9	70.1	78.3	90.3	95.9	92.0
HORDE ⁵¹² (Jacob et al., 2019) ICCV19	BNI	66.3	76.7	84.7	90.6	-	83.9	90.3	94.1	96.3	-	80.1	91.3	96.2	-
MIC ¹²⁸ (Brattoli et al., 2019) ICCV19	R50	66.1	76.8	85.6	-	69.7	82.6	89.1	93.2	-	68.4	77.2	89.4	95.6	90.0
Easy triplet mining ⁵¹² (Xuan et al., 2020b) WACV20	R50	64.9	75.3	83.5	-	-	82.7	89.3	93.0	-	-	78.3	90.7	96.3	-
Group Loss ¹⁰²⁴ (Elezi et al., 2020) ECCV20	BNI	65.5	77.0	85.0	91.3	69.0	85.6	91.2	94.9	97.0	72.7	75.1	87.5	94.2	90.8
Proxy NCA++ ⁵¹² (Teh et al., 2020) ECCV20	R50	66.3	77.8	87.7	91.3	71.3	84.9	90.6	94.9	97.2	71.5	79.8	91.4	96.4	-
DiVA ⁵¹² (Milbich et al., 2020) ECCV20	R50	69.2	79.3	-	-	71.4	87.6	92.9	-	-	72.2	79.6	-	-	90.6
PADS ¹²⁸ (Roth et al., 2020) CVPR20	R50	67.3	78.0	85.9	-	69.9	83.5	89.7	93.8	-	68.8	76.5	89.0	95.4	89.9
Proxy Anchor ⁵¹² (Kim et al., 2020) CVPR20	BNI	68.4	79.2	86.8	91.6	-	86.1	91.7	95.0	97.3	-	79.1	90.8	96.2	-
Proxy Anchor ⁵¹² (Kim et al., 2020) CVPR20	R50	69.7	80.0	87.0	92.4	-	87.7	92.9	95.8	97.9	-	80.0	91.7	96.6	
Proxy Few ⁵¹² (Zhu et al., 2020) NeurIPS20	BNI	66.6	77.6	86.4	-	69.8	85.5	91.8	95.3	-	72.4	78.0	90.6	96.2	90.2
Intra-Batch512	R50	70.3	80.3	87.6	92.7	74.0	88.1	93.3	96.2	98.2	74.8	81.4	91.3	95.9	92.6

Method	BB	R@1	R@10	R@20	R@40 [10]
FashionNet ⁴⁰⁹⁶ (Liu et al., 2016) CVPR16	V	53.0	73.0	76.0	79.0
A-BIER ⁵¹² (Opitz et al., 2020) PAMI20	G	83.1	95.1	96.9	97.8
ABE ⁵¹² (Kim et al., 2018) ECCV18	G	87.3	96.7	97.9	98.5
Multi-similarity ⁵¹² (Wang et al., 2019a) CVPR19	BNI	89.7	97.9	98.5	99.1
Learning to Rank ⁵¹² (Çakir et al., 2019)	R50	90.9	97.7	98.5	98.9
HORDE ⁵¹² (Jacob et al., 2019) <i>ICCV19</i>	BNI	90.4	97.8	98.4	98.9
MIC ¹²⁸ (Brattoli et al., 2019) ICCV19	R50	88.2	97.0	98.0	98.8
Proxy NCA++ ⁵¹² (Teh et al., 2020) ECCV20	R50	90.4	98.1	98.8	99.2
Proxy Anchor ⁵¹² (Kim et al., 2020) CVPR20	BNI	91.5	98.1	98.8	99.1
Proxy Anchor ⁵¹² (Kim et al., 2020) CVPR20	R50	92.1	98.1	98.7	99.2
Intra-Batch ⁵¹²	R50	92.8	98.5	99.1	99.2

Fewer works on Inshop dataset as other evaluation protocol

New Transformer-Based Works

IntraBtach (R5	R@1	CUE R@2 80.3	3-200-2 <u>R@4</u> 87.6	011 <u>R@8</u> 92.7	<u>NMI</u> 74.0	R@ ² 88.1		<u>@</u> 2	ars196 <u>R@4</u> 96.2	R@8 98.2	<u>NMI</u> 74.8			SO <u>@10 F</u> 1.3	- <u>@100</u> 95.9	<u>NMI</u> 92.6	R@1 92.8		nShop <u>0 R@2</u> 5 99.	
	Method		Dim		3-200-2 2				Cars-1			1		P (K) 100	1000		In-Sho 10			[38]
	ResNet-50 [DeiT-S [<mark>53</mark>] DINO [3] [†] ViT-S [48] [†]	†	384 384	70.6 70.8	81.3 81.1	88.7 9 88.8 9)3.5)3.5	52.8 42.9	65.1 53.9	76.2 64.2	85.3 74.4	58.3 63.4	73.9 78.1	85.9 88.3	93.0 95.4 96.0 96.8	37.9 46.1	64.7 71.1	72.1 77.5	75.9 81.1	
S	Sph-DeiT Sph-DINO Sph-ViT [§]		384 384 384	78.7	84.5 86.7		94.9	86.6	88.6 91.8 89.0	95.2	97.4	82.2	92.9 92.1 92.5	97.2 96.8 97.1	99.1 98.9 99.1	89.6 90.1	97.1	98.0		
H H	Hyp-DeiT Hyp-DINO Hyp-ViT §		384 384	77.8	86.6 87.6 91.4	92.4 9	95.1 95.6	86.4 89.2	92.2	95.5 96.7	22.0	83.3 85.1	94.4	97.8	99.1 99.3 99.5	90.5 92.4 92.5		98.5 98.9	98.9 99.1	

[†] pretrained encoders without training on the target dataset. [§] pretrained on the larger ImageNet-21k [6].

	- 1	1	SOP		5 - 12 -	CU	JB	2622	[39
Method	dim	1	10	100	1	2	4	8	
\vdash IRT _R [7]	384	84.2	93.7	97.3	76.6	85.0	91.1	94.3	
E IRT _R [7] ☐ ROADMAP (ours)	384	86.0	94.4	97.6	77.4	85.5	91.4	95.0	

Mark and	dim		SOP	[39]	Cars196 [27]				
Method	Arch.dim			10	r@k	<u> </u>			
		100	10 ¹	10^{2}	10^{3}	1	2	4	8
RS@k [⊺]	R_{so}^{512}	82.8	92.9	97.0	99.0	80.7	88.3	92.8	95.7
RS@k [†] +SiMix	R_{50}^{512}	82.1 +11%	92.8 +5.3%	97.0 +12%				95.9 +4.7%	
SAP [†] [6]	ViT-B/32512	83.7	94.0	97.8	99.3	78.1	85.7	91.0	94.8
RS@k [†]	ViT-B/32512	85.1	94.6	98.0	99.3	78.1	86.4	92.3	95.6
SAP [†] [6]	ViT-B/16512	86.6	95.4	98.4	99.5	86.2	92.1	95.1	97.2
RS@k [™]	ViT-B/16512	88.0	96.1	98.6	99.6	89.5	94.2	96.6	98.3

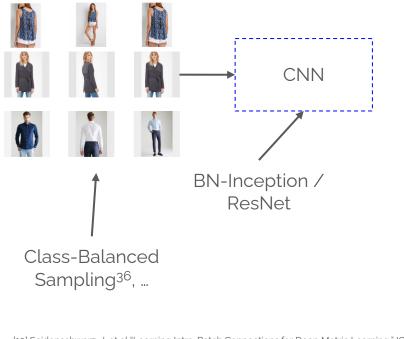
[38] Ermolov, A.et al. "Hyperbolic Vision Transformers: Combining Improvements in Metric Learning" (CVPR 2022) [39] Ramzi, E. et al. "Robust and Decomposable Average Precision for Image Retrieval" (NeurIPS 2021)

Standard Protocol

Standard Protocol - Data Augmentation

Training³: Crop (scale, aspect ratio, 227) and Random horizontal flip

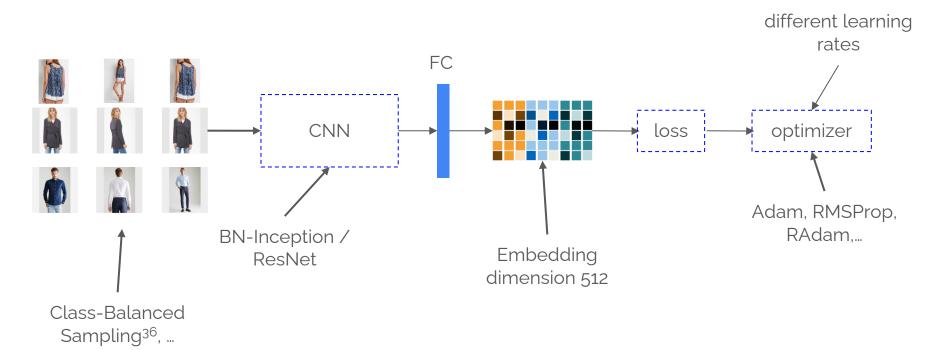
Testing³: Resize (smaller side 256) CenterCrop (to 227)


Standard Protocol - Training Pipeline

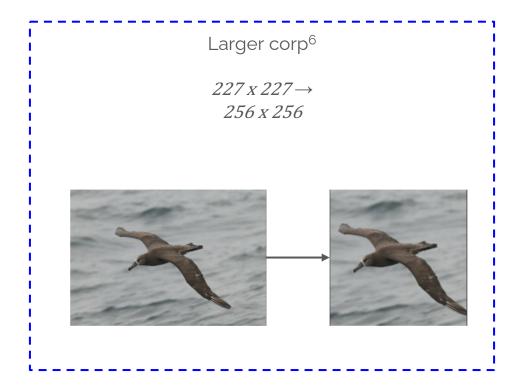
Class-Balanced Sampling³⁶, ...

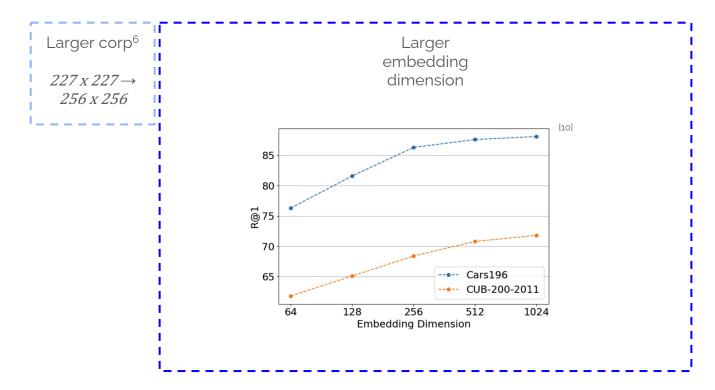
[36] Zhai, A. and Wu, H. Classification is a strong baseline for deep metric learning. (BMVC 2019).

Standard Protocol - Training Pipeline

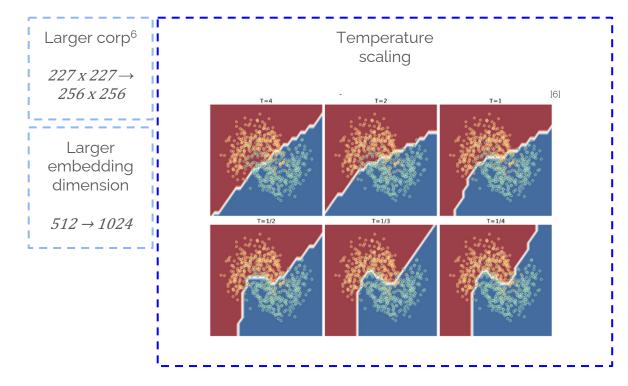


[10] Seidenschwarz, J. et al "Learning Intra-Batch Connections for Deep Metric Learning." ICML (2021).	
[12] Roth, K. et al. "Revisiting Training Strategies and Generalization Performance in Deep Metric Learning." ICML (2020)

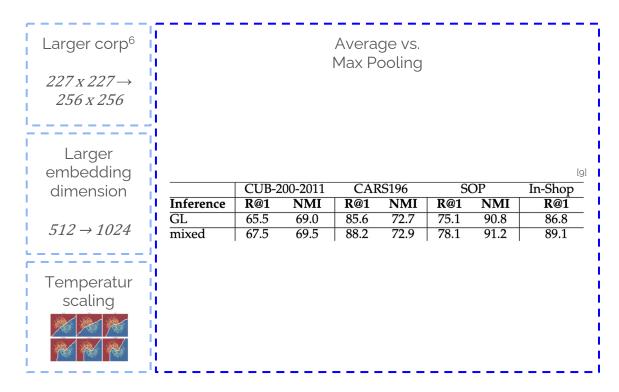

Network	GN	IBN	R50	[12]
CUB200, R@1	45.41	48.78	43.77	
CARS196, R@1	35.31	43.36	36.39	
SOP, R@1	44.28	49.05	48.65	

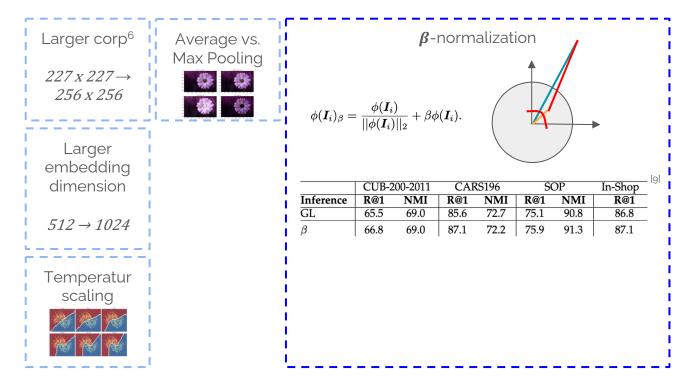

		CU	B-200-2
BB	R@1	R@2	R@4
G	42.5	55	66.4
G	51.9	64.3	74.9
BNI	53.2	66.1	76.7
G	54.7	66.3	76
BNI	49.2	61.9	67.9
R50	63.6	74.4	83.1
BNI	57.1	68.8	78.7
G	60.6	71.5	79.8
R50	61.3	73.9	83.5
BNI	57.4	69.7	79.2
BNI	65.7	77.0	86.3
G	61.4	73.0	81.9
R50	65.9	76.6	84.4
BNI	65.4	76.4	84.5
BNI	66.3	76.7	84.7
R50	66.1	76.8	85.6
R50	64.9	75.3	83.5
	G BNI G BNI R50 BNI G R50 BNI BNI BNI BNI R50	G 42.5 G 51.9 BNI 53.2 G 54.7 BNI 49.2 R50 63.6 BNI 57.1 G 60.6 RS0 61.3 BNI 57.4 BNI 65.7 G 61.4 R50 65.9 BNI 65.4 BNI 66.3 R50 66.1	BB R@1 R@2 G 42.5 55 G 51.9 64.3 BNI 53.2 66.1 G 54.7 66.3 BNI 49.2 61.9 R50 63.6 74.4 BNI 57.1 68.8 G 60.6 71.5 R50 61.3 73.9 BNI 57.4 69.7 BNI 65.7 77.0 G 61.4 73.0 R50 65.9 76.6 BNI 65.4 76.4 BNI 66.3 76.7 R50 65.4 76.4 BNI 66.3 76.7 R50 66.1 76.8

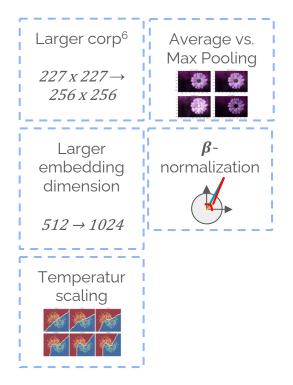
Standard Protocol - Training Pipeline

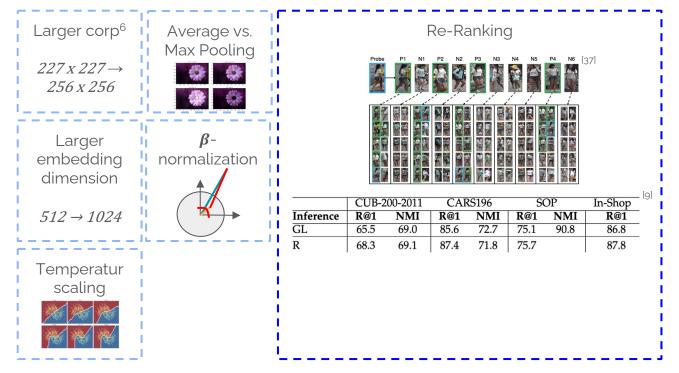


Ensure fair comparison especially backbone and embedding dimension

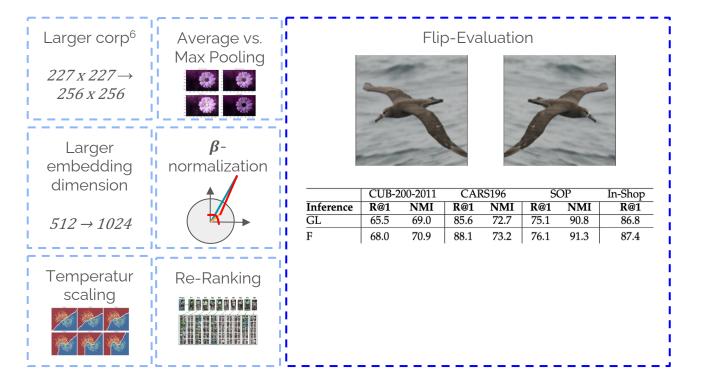

Larger corp ⁶	Larger embeddi							
227 x 227 → 256 x 256	dimensi	0						
				CU	B-200-2	011	[:	10]
	Method	BB	R@1	R@2	R@4	R@8	NMI	1
	Triple ⁶⁴ (Schroff et al., 2015) CVPR15	G	42.5	55	66.4	77.2	55.3	1
	Npair ⁶⁴ (Sohn, 2016) NeurIPS16	G	51.9	64.3	74.9	83.2	60.2	
	Deep Spectra ⁵¹² (Law et al., 2017) <i>ICML17</i>	BNI	53.2	66.1	76.7	85.2	59.2	
	Angular Loss ⁵¹² (Wang et al., 2017) <i>ICCV17</i>	G	54.7	66.3	76	83.9	61.1	
	Proxy-NCA ⁶⁴ Movshovitz-Attias et al., 2017) <i>ICCV17</i>	BNI	49.2	61.9	67.9	72.4	59.5	
	Margin Loss ¹²⁸ (Manmatha et al., 2017) <i>ICCV17</i>	R50	63.6	74.4	83.1	90.0	69.0	
	Hierarchical triplet ^{E12} (Ge et al., 2018) ECCV18	BNI	57.1	68.8	78.7	86.5	-	
	ABE^{512} (Kim et al., 2018) <i>ECCV18</i>	G	60.6	71.5	79.8	87.4	-	
	Normalized Softmax ⁵¹² (Zhai & Wu, 2019) BMVC19	R50	61.3	73.9	83.5	90.0	69.7	
	RLL-H ⁵¹² (Wang et al., 2019b) CVPR19	BNI	57.4	69.7	79.2	86.9	63.6	
	Multi-similarity ⁵¹² (Wang et al., 2019a) CVPR19	BNI	65.7	77.0	86.3	91.2	-	
	Relational Knowledge ⁵¹² (Park et al., 2019a) CVPR19	G	61.4	73.0	81.9	89.0	-	
	Divide and Conquer ¹⁰²⁸ (Sanakoyeu et al., 2019) CVPR19	R50	65.9	76.6	84.4	90.6	69.6	
	SoftTriple Loss ⁵¹² (Qian et al., 2019) <i>ICCV19</i>	BNI	65.4	76.4	84.5	90.4	69.3	
	HORDE ⁵¹² (Jacob et al., 2019) <i>ICCV19</i>	BNI	66.3	76.7	84.7	90.6	-	
	MIC ¹²⁸ (Brattoli et al., 2019) <i>ICCV19</i>	R50	66.1	76.8	85.6	-	69.7	

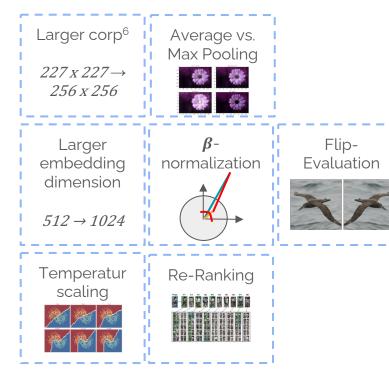



Larger corp ⁶ $227 \times 227 \rightarrow$ 256×256	Temperat scaling		
Larger embedding dimension <i>512 → 1024</i>	$\begin{array}{c} \hline R@1 \\ \hline ProxyNCA (Emb: 2048) \\ + cbs \\ + prob \\ + norm \\ + max \\ + fast \\ + max + fast \\ + norm + prob + cbs \\ + norm + prob + cbs + max \\ + norm + prob + cbs + max + fast \\ \end{array}$	$54.8 \pm 6.2 \\ 59.0 \pm 0.4 \\ 60.2 \pm 0.6 \\ 61.3 \pm 0.7 \\ 56.3 \pm 0.8 \\ 60.3 \pm 0.5 \\ 60.4 \pm 0.7 \\ 61.2 \pm 0.7 \\ \end{cases}$	



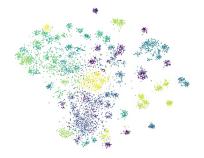
Larger corp ⁶	Average vs. Max Pooling
227 x 227 → 256 x 256	
- Li	Method Pool R@1 Arch Emb
	WithoutTraining avg 45.0 R50 2048
	max 53.1 R50 2048
Larger	Margin [33] avg 63.3 R50 128
embedding	max 64.3 R50 128
dimension	Triplet-Semihard sampling [22] avg 60.5 R50 128
	max 61.6 R50 128
<i>512</i> → <i>1024</i>	MS [32] avg 64.9 R50 512
$512 \rightarrow 1024$	max 68.5 R50 512
	MS [32] avg 65.1 I3 512
	max 66.1 I3 512
Temperatur I	Horde (Contrastive Loss) [13] avg 65.1 I3 512
scaling	max 63.1 I3 512





[9] Elezi, I. et al. "The Group Loss++: A deeper look into group loss for deep metric learning", PAMI (2022/03) [37] Zhong, Z. et al. "Re-ranking Person Re-identification with k-reciprocal Encoding" (CVPR 2017)

[9] Elezi, I. et al. "The Group Loss++: A deeper look into group loss for deep metric learning", PAMI (2022/03) [37] Zhong, Z. et al. "Re-ranking Person Re-identification with k-reciprocal Encoding" (CVPR 2017) [9]


Ensure fair evaluation!

[9] Elezi, I. et al. "The Group Loss++: A deeper look into group loss for deep metric learning", PAMI (2022/03) [37] Zhong, Z. et al. "Re-ranking Person Re-identification with k-reciprocal Encoding" (CVPR 2017)


Questioning evaluation protocol

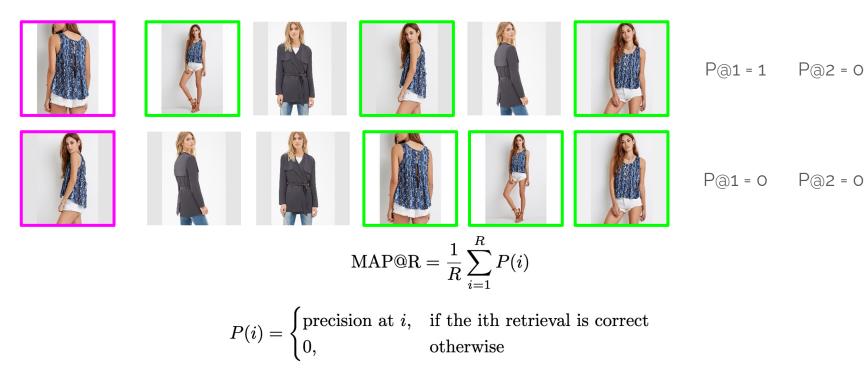
Are current evaluation metrics good?

Varying results NMI (clustering and seeds)

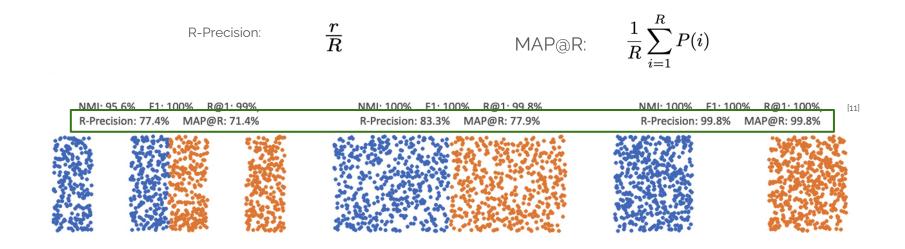
NMI and R@k not robust

Are there better evaluation metrics?

R-Presicion



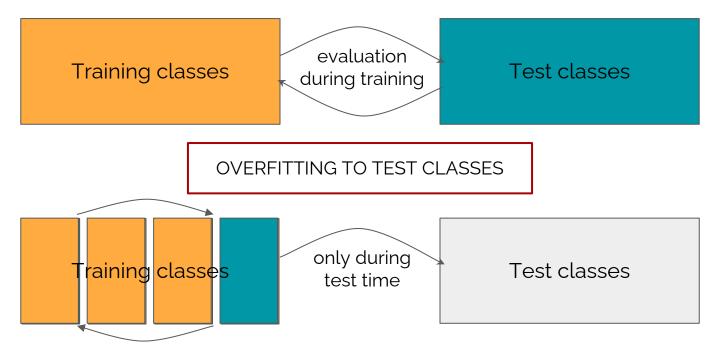
3/5


3/5

- $rac{r}{R}$
- *R* = total number of references for given query
- r = number of references of same class in R-NN set



Current vs. new evaluation metrics



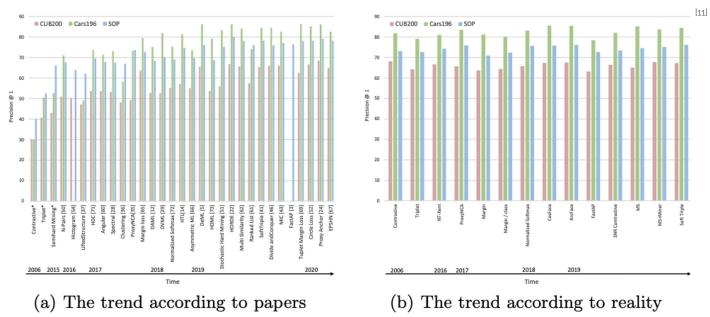
Training with Test set Feedback

Training with Test set Feedback

Don't use test set feedback!

Metric Learning Reality Check

- The trunk model is an ImageNet [45] pretrained BN-Inception network [21]," with output embedding size of 128. BatchNorm parameters are frozen during training, to reduce overfitting.
- The batch size is set to 32. Batches are constructed by first randomly sampling C classes, and then randomly sampling M images for each of the C classes. We set C = 8 and M = 4 for embedding losses, and C = 32 and M = 1 for classification losses.
- During training, images are augmented using the random resized cropping strategy. Specifically, we first resize each image so that its shorter side has length 256, then make a random crop that has a size between 40 and 256, and aspect ratio between 3/4 and 4/3. This crop is then resized to 227x227, and flipped horizontally with 50% probability. During evaluation, images are resized to 256 and then center cropped to 227.
- All network parameters are optimized using RMSprop with learning rate 1e-6. We chose RMSprop because it converges faster than SGD, and seems to generalize better than Adam, based on a small set of experiments. For loss functions that include their own learnable weights (e.g. ArcFace), we use RMSprop but leave the learning rate as a hyperparameter to be optimized.
- Embeddings are L2 normalized before computing the loss, and during evaluation.


Metric Learning Reality Check

CUB-200-2011

	Concatenated (512-dim)			Separated (128-dim)				
	P@1	RP	MAP@R	P@1	RP	MAP@R	year	loss
Pretrained	51.05	24.85	14.21	50.54	25.12	14.53		
Contrastive	68.13 ± 0.31	37.24 ± 0.28	26.53 ± 0.29	59.73 ± 0.40	31.98 ± 0.29	21.18 ± 0.28	2006	Embedding
Triplet	64.24 ± 0.26	34.55 ± 0.24	23.69 ± 0.23	55.76 ± 0.27	29.55 ± 0.16	18.75 ± 0.15	2006	Embedding
NT-Xent	66.61 ± 0.29	35.96 ± 0.21	25.09 ± 0.22	58.12 ± 0.23	30.81 ± 0.17	19.87 ± 0.16	2016	Embedding
ProxyNCA	65.69 ± 0.43	35.14 ± 0.26	24.21 ± 0.27	57.88 ± 0.30	30.16 ± 0.22	19.32 ± 0.21	2017	Classification
Margin	63.60 ± 0.48	33.94 ± 0.27	23.09 ± 0.27	54.78 ± 0.30	28.86 ± 0.18	18.11 ± 0.17	2017	Embedding
Margin/class	64.37 ± 0.18	34.59 ± 0.16	23.71 ± 0.16	55.56 ± 0.16	29.32 ± 0.15	18.51 ± 0.13	2017	Embedding
N. Softmax	65.65 ± 0.30	35.99 ± 0.15	25.25 ± 0.13	58.75 ± 0.19	31.75 ± 0.12	20.96 ± 0.11	2017	Classification
CosFace	67.32 ± 0.32	$\textbf{37.49} \pm \textbf{0.21}$	$\textbf{26.70} \pm \textbf{0.23}$	59.63 ± 0.36	31.99 ± 0.22	21.21 ± 0.22	2018	Classification
ArcFace	67.50 ± 0.25	37.31 ± 0.21	26.45 ± 0.20	60.17 ± 0.32	$\textbf{32.37} \pm \textbf{0.17}$	$\textbf{21.49} \pm \textbf{0.16}$	2019	Classification
FastAP	63.17 ± 0.34	34.20 ± 0.20	23.53 ± 0.20	55.58 ± 0.31	29.72 ± 0.16	19.09 ± 0.16	2019	Embedding
SNR	66.44 ± 0.56	36.56 ± 0.34	25.75 ± 0.36	58.06 ± 0.39	31.21 ± 0.28	20.43 ± 0.28	2019	Embedding
MS	65.04 ± 0.28	35.40 ± 0.12	24.70 ± 0.13	57.60 ± 0.24	30.84 ± 0.13	20.15 ± 0.14	2019	Embedding
MS+Miner	67.73 ± 0.18	37.37 ± 0.19	26.52 ± 0.18	59.41 ± 0.30	31.93 ± 0.15	21.01 ± 0.14	2019	Embedding
SoftTriple	67.27 ± 0.39	37.34 ± 0.19	26.51 ± 0.20	59.94 ± 0.33	32.12 ± 0.14	21.31 ± 0.14	2019	Classification

Metric Learning Reality Check

CUB-200-2011

Are standardized training strategies fair?

- Does every method require the same learning rate, weight decay, and batch size to perform best?
- Should we not use current best performing optimizers and augmentation techniques but stick with "old" stuff?
- Optimally: report standard protocol as well as the best you can get!
- → Take current SOTA results with a grain of salt

https://github.com/KevinMusgrave/powerful-benchmarker

https://github.com/KevinMusgrave/pytorch-metric-learning

References

[1] Goldberger, Jacob, Sam T. Roweis, Geoffrey E. Hinton and Ruslan Salakhutdinov. "Neighbourhood Components Analysis." NIPS (2004). [2] Movshovitz-Attias, Yair, Alexander Toshev, Thomas Leung, Sergev Joffe and Saurabh Singh, "No Fuss Distance Metric Learning Using Proxies," ICCV (2017) [3] Kim, Sungyeon, Dongwon Kim, Minsu Cho and Suha Kwak, "Proxy Anchor Loss for Deep Metric Learning," CVPR (2020) [4] Zhu, Yuehua, Muli Yang, Cheng Deng and Wei Liu. "Fewer is More: A Deep Graph Metric Learning Perspective Using Fewer Proxies." NeurIPS (2020) [5] https://en.wikipedia.org/wiki/Mutual_information#/media/FileEntropy-mutual-information-relative-entropy-relation-diagram.svg 6] Teh, Eu Wern, Terrance Devries and Graham W. Taylor. "ProxyNCA++: Revisiting and Revitalizing Proxy Neighborhood Component Analysis." ECCV (2020) (7) Yu, Dingjun, Hanli Wang, Peiqiu Chen and Zhihua Wei. "Mixed Pooling-us-minooding-us-minooding-us-average-pooling-osfbo3f45ag
(9) Ettezi, Ismail, Seidenschwarz, Jenny, Wagner, Laurin, Vascon, Sebastiano, Torcinovich, Alessandro, Petillo, Marcello, Leat-Taxe, Laura. "The Group Loss+: A deeper look into group loss for deep metric learning", PAMI (2022/03) [10] Seidenschwarz, Jenny, Ismail Elezi and Laura Leal-Taix'e. "Learning Intra-Batch Connections for Deep Metric Learning." ICML (2021). [11] Musgrave, Kevin, Serge J. Belongie and Ser-Nam Lim, "A Metric Learning Reality Check," ECCV (2020). 12] Roth, Karsten, Timo Milbich, Samarth Sinha, Prateek Gupta, Bjoern Ommer and Joseph Paul Cohen. "Revisiting Training Strategies and Generalization Performance in Deep Metric Learning." ICML (2020) 13] Kemelmacher-Shlizerman, Ira, Steven M. Seitz, Daniel Miller and Evan Brossard. "The MegaFace Benchmark: 1 Million Faces for Recognition at Scale." CVPR (2016) [14] Sun, Yifan, Liang Zheng, Yi Yang, Qi Tian and Shengjin Wang. "Beyond Part Models: Person Retrieval with Refined Part Pooling." ECCV (2018). 115] Chen, Tianlong, Shaoiin Ding, Jingvi Xie, Ye Yuan, Wuyang Chen, Yang Yang, Zhou Ren and Zhangyang Wang, "ABD-Net: Attentive but Diverse Person Re-Identification." 2019 ICCV) (2019) [16] Tay, Chiat-Pin, Sharmili Roy and Kim-Hui Yap. "AANet: Attribute Attention Network for Person Re-Identifications." CVPR (2019) [17] Zhu, Zhihui, Xinyang Jiang, Feng Zheng, Xiao-Wei Guo, Feiyue Huang, Weishi Zheng and Xing Sun. "Viewpoint-Aware Loss with Angular Regularization for Person Re-Identification." AAAI (2020). [18] Luo, Haowen, Youzhi Gu, Xingyu Liao, Shengi Lai and Wei Jiang. "Bags of Tricks and A Strong Baseline for Deep Person Re-identification." (2019). 19] Vinyals, Oriol, Charles Blundell, Timothy P. Lillicrap, Koray Kavukcuoğlu and Daan Wierstra. "Matching Networks for One Shot Learning." NIPS (2016). [20] Chén, Ting, Simon Kornblith, Mohammad Norouzi and Géoffrey E. Hinton. "A Simple Framework for Contrastive Learning of Visual Representations." ArXiv abs/2002.05709 (2020): n. pag. [21] Matching networks for one shot learning. In NIPS, 2016. [22] Prototypical networks for few-shot learning. In NIPS, 2017. [23] Liu, W. et al. "SphereFace: Deep Hypersphere Embedding for Face Recognition." (CVPR, 2017) [24] Wang, H. et al. "CosFace: Large Margin Cosine Loss for Deep Face Recognition." (CVPR 2018) [25] Deng, J. et al. "ArcFace: Additive Angular Margin Loss for Deep Face Recognition." (CVPR 2019) [26] Li, W. et al. "DeepReID: Deep Filter Pairing Neural Network for Person Re-identification" (CVPR 2014) 127] Leal-Taixé, L., Milan, A., Reid, I., Roth, S. & Schindler, K. MOTChallenge 2015: Towards a Benchmark for Multi-Target Tracking. arXiv:1504.01942 [cs], 2015., (arXiv: 1504.01942). [28] Chen. Ting et al. "A Simple Framework for Contrastive Learning of Visual Representations." (arxiv 2020) [29] Toker, Aysim et al. "Coming Down to Earth: Satellite-to-Street View Synthesis for Geo-Localization." (CVPR, 2021) (30) Jegou, H et al. "Product quantization for nearest neighbor search." (IPAMI 2011) [31]]McDaid, A. et al. "Normalized mutual information to evaluate overlapping community finding algorithms." (arxiv 2011) [32] Wah, C. et al. "The Caltech-UCSD Birds-200-2011 Dataset." (Technical Report 2011) [33] Krause, J. et al. "3d object representations for fine-grained categorization." (Workshop on 3D Representation and Recognition, 2013.) [34] Song, H. et al. "Deep metric learning via lifted structured feature embedding." (CVPR 2016) [35] Liu, Ž. et al. "Deepfashion: Powering robust clothes recognition and retrieval with rich annotations" (CVPR 2016) [36] Zhai, A. and Wu, H. Classification is a strong baseline for deep metric learning. (BMVC 2019). [37] Zhong, Z. et al. "Re-ranking Person Re-identification with k-reciprocal Encoding" (CVPR 2017) [38] Ermolov, A.et al. "Hyperbolic Vision Transformers: Combining Improvements in Metric Learning" (CVPR 2022) [39] Ramzi, E. et al. "Robust and Decomposable Average Precision for Image Retrieval" (NeurIPS 2021) [40] Patel, Y. et al. "Recall@k Surrogate Loss with Large Batches and Similarity Mixup" (CVPR 2022)