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For a triplet, the triplet loss uses 2 relations: 1 between the
anchor and the positive, and one between the anchor and the
negative.



For a mini batch consisting of N triplets, the number of relations
that triplet loss uses is 2N/3.



What if we could take advantage of all N=(or in case of
symmetry N(N-1)/2) relations between the samples in the
minibatch?



Two ways of doing so

1) Proxy losses.
2) Information propagation losses.

Possible to combine them.



Proxy losses




But before that a classification loss

FC in SoftMax FCin SoftTriple

Figure 1. Illustration of the proposed SoftTriple loss. In conven-

tional SoftMax loss, each class has a representative center in the

last fully connected layer. Examples in the same class will be col-

lapsed to the same center. It may be inappropriate for the real-

world data as illustrated. In contrast, SoftTriple loss keeps multi-

ple centers (e.g., 2 centers per class in this example) in the fully , , ,
connected layer and each image will be assigned to one of them. Qian Qt al, SOftTrlDlQ Loss: Deep Metric
It is more flexible for modeling intra-class variance in real-world Learning Without Triplet Sampling, ICCV
data sets. 2019



https://openaccess.thecvf.com/content_ICCV_2019/papers/Qian_SoftTriple_Loss_Deep_Metric_Learning_Without_Triplet_Sampling_ICCV_2019_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2019/papers/Qian_SoftTriple_Loss_Deep_Metric_Learning_Without_Triplet_Sampling_ICCV_2019_paper.pdf
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Figure 2. Illustration of differences between SoftMax loss and pro-
posed losses. Compared with the SoftMax loss, we first increase
the dimension of the FC layer to include multiple centers for each

Figure 1. Illustration of the proposed SoftTriple loss. In conven- class (e.g., 2 centers per class in this example). Then, we obtain

tional SoftMax loss, each class has a representative center in the the similarity for each class by different operators. Finally, the

last fully connected layer. Examples in the same class will be col- dlstr.xbutlon over different classes is computed with the similarity
obtained from each class.

lapsed to the same center. It may be inappropriate for the real-

world data as illustrated. In contrast, SoftTriple loss keeps multi-

ple centers (e.g., 2 centers per class in this example) in the fully , , ,

connected layer and each image will be assigned to one of them. Qian Qt al, SOftTrlDLQ Loss: Deep Metric

It is more flexible for modeling intra-class variance in real-world Learning Without Triplet Sampling, ICCV

data sets. 2019
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The need for proxies

.................. *

Figure 2: Illustrative example of the power of proxies. [Left
panel] There are 48 triplets that can be formed from the in-
stances (small circles/stars). [Right panel] Proxies (large
circle/star) serve as a concise representation for each se-
mantic concept, one that fits in memory. By forming triplets
using proxies, only 8 comparisons are needed.



Proxy-NCA i

Algorithm 1 Proxy-NCA Training.

Randomly init all values in 6 including proxy vectors.
for:=1...Tdo

Sample triplet (z,y, Z) from D Y is the positive proxy,
Formulate proxy triplet (z, p(y), p(Z)) Z 5 the set of proxies.
_ exp(—d(z,p(y)))
6= ~log (Zp(z)ep(m exp(_d(m’f’(z))))
0 < 0 — A0yl
end for

Movshovitz-Attias et al., No Fuss Distance Metric Learning using Proxies, ICCV 2017



https://openaccess.thecvf.com/content_ICCV_2017/papers/Movshovitz-Attias_No_Fuss_Distance_ICCV_2017_paper.pdf

Results and convergence speed

R@l R@2 R@4 R@8 NMI
Triplet Semihard [' ] 51.54 63.78 73.52 81.41 53.35

Lifted Struct [*] 5298 66.70 76.01 84.27 56.88 0.8
Npairs [ 4] 5390 66.76 7775 86.35 57.79
Proxy-Triplet 5590 67.99 7404 7795 5444 0.7
Struct Clust [ °] 58.11 70.64 80.27 87.81 59.04
Proxy-NCA 7322 8242 8636 88.68 64.90 0.6
—
® 0.5
Table 1: Retrieval and Clustering Performance on the o TrOIet [12]
Cars196 dataset. Bold indicates best results. 0.4 Lifted Struct [8] |
e Npairs [14]
0.3 —— Struct Clust [15] |
R@l R@2 R@4 R@8 NMI 0.3 = Froxy-NCA
Triplet Semihard [ 7] 42.59 55.03 66.44 77.23 55.38 0 44 88 132 177 221 265
Lifted Struct [] 43,57 56.55 68.59 79.63 56.50 Training Epochs
Npairs [ 1] 4537 5841 69.51 7949 57.24
Struct Clust [ 7] 48.18 61.44 71.83 8192 59.23
Proxy NCA 49.21 6190 6790 7240 59.53

Table 2: Retrieval and Clustering Performance on the
CUB200 dataset.



Using proxies as anchors Tm
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anchors is a data point, anchor is a proxy, while
while positive and (d) Proxy-NCA (e) Ours positive and negative
negative samples are - 3 “ samples are data
proxies. points..

Kim et al., Proxy Anchor Loss for Deep Metric Learning, CVPR 2020



https://openaccess.thecvf.com/content_CVPR_2020/papers/Kim_Proxy_Anchor_Loss_for_Deep_Metric_Learning_CVPR_2020_paper.pdf

Roughly the same loss as Proxy-NCA

P+| Z log <1+ Z e~(s(@p)= 5))

pEPT T€EX,
+ gy o8 (14 3 entien)
peEP r€EX,

where 6 > 0 is a margin, @ > 0 is a scaling factor, P
indicates the set of all proxies, and P™ denotes the set of
positive proxies of data in the batch. Also, for each proxy
p, a batch of embedding vectors X is divided into two sets:

X, the set of positive embedding vectors of p, and X =
X — X



Fast convergence

Type Loss Training Complexity

Proxy-Anchor (Ours) O(MC)
Proxy Proxy-NCA [ ] O(MC)

SoftTriple [ ] O(MCU?)
Contrastive [, -, "] O(M?)

Triplet (Semi-Hard) [ "] O(M3/B?)
Pair Triplet (Smart) [ 1] O(M?)
N-pair [7] O(M?)
Lifted Structure [ "] O(M?3)

Table 1. Comparison of training complexities.



Fast convergence

Type Loss Training Complexity

Proxy-Anchor (Ours) O(MC)
Proxy Proxy-NCA [ ] O(MC)

SoftTriple [ ] O(MCU?)
Contrastive [, -, "] O(M?)

Triplet (Semi-Hard) [ "] O(M3/B?)
Pair Triplet (Smart) [ 1] O(M?)
N-pair [7] O(M?)
Lifted Structure [ "] O(M?3)

Table 1. Comparison of training complexities.

0.9
0.8
0.7
é 0.6 Method Time Per Epoch
o Proxy-Anchor (Ours) 27.10s
0.5 — MS[34] 28.43s
Proxy-NCA [21] 27.41s
0.4 Semi-Hard Triplet [25]  29.97s
—— N-Pair [27] 28.41s
e 20 40 60 80 100

Training Time (Min)



CUB-200-2011 Cars-196

Recall@ K 1 2 4 8 1 2 4 8
Clustering®* [ "] BN | 482 61.4 71.8 81.9 58.1 70.6 80.3 87.8
Proxy-NCA% [ 1] BN 49.2 61.9 67.9 72.4 73.2 82.4 86.4 87.8
Smart Mining®4 [ 1] G 49.8 62.3 74.1 83.3 64.7 76.2 84.2 90.2
MS64 [1] BN 57.4 69.8 80.0 87.8 77.3 85.3 90.5 94.2
SoftTriple®* [7] BN 60.1 719 81.2 88.5 78.6 86.6 91.8 95.4
Proxy-Anchor®* BN 61.7 73.0 81.8 88.8 78.8 87.0 92.2 95.5
Margin'?® [ 7] R50 | 63.6 74.4 83.1 90.0 79.6 86.5 91.9 95.1
HDC384 [40] G 53.6 65.7 77.0 85.6 73.7 83.2 89.5 93.8
A-BIER®'? [17] G 57.5 68.7 78.3 86.2 82.0 89.0 93.2 96.1
ABE®!2 [1 ] G 60.6 71.5 79.8 87.4 852 90.5 94.0 96.1
HTL®2 [ ] BN 57.1 68.8 78.7 86.5 81.4 88.0 92.7 95.7
RLL-H%!2 [35] BN 57.4 69.7 79.2 86.9 74.0 83.6 90.1 94.1
MS512 [34] BN 65.7 77.0 86.3 91.2 84.1 90.4 94.0 96.5
SoftTriple®12 [ ] BN 65.4 76.4 84.5 90.4 84.5 90.7 94.5 96.9

a2 BN 68.4 79.2 86.8 91.6 86.1 91.7 95.0 97.3

Proxy-Anchor




Combining proxies with label propagation

*/x o e
Predictions Ground truths
Subgraphs W Predictive
. in a mini-batch outputs Z N #
graph construction Reverse label propagation Classification loss
Samples: © class 1 @ class 2 class 3 Proxies:  class 1  class 2 class 3

Zhu et al., Fewer is More: A Deep Graph Metric Learning Perspective Using Fewer Proxies, NeurlPS 2020



https://arxiv.org/abs/2010.13636

Key is the label propagation
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Figure 3: Subgraph evolution during the loss back-
propagation process. Meanings of colors and
shapes are the same as Fig. 2.
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CUB-200-2011 Cars196 Stanford Online Products
NMI R@1 R@2 R@4 |NMI R@]1 R@2 R@4 |NMI R@1 R@10 R@10r

SemiHard®* [29] BN |554 426 550 664|534 515 63.8 735|895 667 824 919
Clustering® [24] |BN|[59.2 482 614 71.859.0 58.1 70.6 803 [89.5 67.0 83.7 932
LiftedStruct®® [25] | G |56.6 43.6 56.6 68.6 569 53.0 657 76.0 |88.7 625 80.8 919
ProxyNCA®* [23] |BN|59.5 492 619 679|649 732 824 864 [90.6 737 - &

Method

HDC384 [45] G| - 536 657 770| — 73.7 832 895| - 695 844 928
HTL5%? [5] BN| - 57.1 688 787| - 814 880 927 | - 748 883 948
DAMLRRM®!? [40]| G |61.7 55.1 66.5 768 |642 73.5 826 89.1 882 69.7 852 93.2
HDML®!? [46] G |62.6 53.7 657 76.7[69.7 79.1 87.1 92.1[89.3 687 832 924
SoftTriple®'? [26] |BN|69.3 654 764 84.5|70.1 845 90.7 945920 783 903 959
MS512 [35] BN| - 657 770 863 | - 841 904 940| - 782 905 96.0
ProxyGML%* BN |[65.1 59.4 70.1 804|679 789 875 919 [89.8 762 894 954
ProxyGML?*** BN | 684 652 764 843|709 845 904 945 (90.1 779 90.0 96.0

ProxyGML5!2 BN |69.8 66.6 77.6 86.4 |72.4 855 91.8 953 (902 780 90.6 96.2



Information propagation losses




The Group Loss Tm

Embedding

onn |-

Shared | Weights

Group Loss

Black footed

D Initialization: Initialize X, the image-label assign-
ment using the softmax outputs of the neural network.
Compute the n X n pairwise similarity matrix W using
the neural network embedding.

Embedding

Softmax

o RS

Indigo

~ Shared Weights L
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Embeddin:
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Shared ' Weights

Embedding /
CNN —’E £ = Anchor

The goal of the loss function is to refine the soft-labels predicted by a neural network, using an
iterative procedure based on the similarity between the images in the minibatch.

the refined probabilities and update the weights of the
neural network using backpropagation.

Elezi et al., The Group Loss for Deep Metric Learning, ECCV 2020



https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123520273.pdf

The Group Loss - 1) Initialization

1)

The local information is represented as a probability matrix given by the
softmax layer of the neural network. Some of the entries (called anchors)
are set to one-hot labeling in order to propagate noiseless information.
These entries do not contribute to the loss function, instead they guide
the remaining samples towards their correct labeling.

A measure of similarity is computed between all pairs of embeddings in
the minibatch to generate a similarity matrix. We compute the similarity
between embeddings i andj using Pearson’s correlation:

COV[¢( i), ¢(1;)]
\/Var I;)|Var|op(1,)]

w(i, j) =




The Group Loss - 2) Refinement - toy example Tim

Considera ! Batch Similarities ' Labeling Priors
mini-batch  ; : :
with: \
KB and C are much N iaeges Maybe the net is
more similar than A (AB.C) o untrained and so
and B, orAand C, 4'ciassns — . — the probabilities are
so the entry is set 34) | Al o o oo s G R / initialized to an
1 0 [ 09 a8 ] 1 0 0 . . . .
to a much higher [J=Anchor | gt er e e e T uniform distribution.
Q/alue. J K /
1%t jteration 3 jteration
’ |




The Group Loss - 2) Refinement - Replicator Dynamics
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The Group Loss - 2) Refinement - Replicator Dynamics

lteratet +1

fimes Propagate

information
\ l
[ )
A

!
‘1 t i t
(4 1) = O

yd S T (O ()
\ }

Lambda is the class Y

Normalize in order to
stay in the standard
simplex

From the similarity
matrix

|

i\ = E U’,’j.l‘j,\

i=1

This measures the support
that the current mini-batch
gives to image i belonging to
class lambda



The Group Loss - 3) Loss Function

1) Compute cross-entropy over the refined probabilities,

2) Backpropagate over the entire net.

- Group Loss has no parameters to learn, but it propagates
the gradients over the network

- This is very different to softmax cross-entropy loss.



The Group Loss - Algorithm

Algorithm 1: The Group Loss

Input: input : Set of pre-processed images in the mini-batch B, set of labels v,
neural network ¢ with learnable parameters 6, similarity function w,
number of iterations 7T’

Compute feature embeddings ¢(B, 0) via the forward pass

Compute the similarity matrix W = [w(4, j)]i;

Initialize the matrix of priors X (0) from the softmax layer

fort=20,..., T-1 do

Q(t) = diag([X () © HI(t)]1)
L X(t+1)=Q (1) [X(t) © II(t)]

Compute the cross-entropy J(X(7T),y)
Compute the derivatives 9.J/06 via backpropagation, and update the weights 6

0 SO U W N




Results

CUB-200-2011 CARS 196 Stanford Online Products
Loss R@1 R@2 R@4 R@8 NMIR@1 R@2 R@4 R@8 NMI|R@1 R@10 R@100 NMI
Triplet [35] 425 55 66.4 772 55.3|51.5 63.8 73.5 824 53.4[66.7 824 919 895
Lifted Structure [39] | 43.5 56.5 68.5 79.6 56.5|53.0 65.7 76.0 84.3 56.9 |62.5 80.8 91.9 887
Npairs [37] 51.9 64.3 749 83.2 60.2|68.9 789 85.8 90.9 62.7|66.4 829 921 87.9

Facility Location [38]| 48.1 61.4 71.8 81.9 59.2|58.1 70.6 80.3 87.8 59.0 | 67.0 83.7 93.2 89.5
Angular Loss [43] 54.7 66.3 76 839 61.1 |71.4 814 87.5 921 63.2|70.9 85.0 93.5 88.6
Proxy-NCA [23] 49.2 619 679 724 595|732 824 864 83.7 649 |73.7 - - 90.6
Deep Spectral [18] 53.2 66.1 76.7 85.2 59.2|73.1 822 89.0 93.0 64.3|67.6 83.7 93.3 894
Classification [52] 59.6 72 812 8.4 66.2|81.7 8.9 934 96 70.5|73.8 88.1 95 89.8
Bias Triplet [50] 46.6 58.6 70.0 - - | 79.2 86.7 914 - - 163.0 798 90.7 -

Ours 65.5 77.0 85.0 91.3 69.0(85.6 91.2 94.9 97.0 72.7|75.7 88.2 948 91.1




Results - Ensembles

CUB-200-2011 CARS 196 Stanford Online Products

Loss+Sampling [R@Q1 R@Q2 R@Q4 RQ@8 NMI|R@1 R@2 R@4 R@S8 NMI|R@1 R@10 R@100 NMI
Samp. Matt. [25] |63.6 744 83.1 90.0 69.0|79.6 86.5 91.9 95.1 69.172.7 86.2 93.8  90.7
Hier. triplet [10] 57.1 68.8 78.7 8.5 - |81.4 88.0 92.7 95.7 - |74.8 88.3 94.8 -
DAMLRRM [54] bb.1 665 76.8 853 61.7 |73.5 826 89.1 93.5 642 |69.7 85.2 93.2 B8R2
DE-DSP [7] 53.6 65.5 76.9 61.7 - |729 81.6 8.8 - 644 |68.9 84.0 92.6 89.2
RLL 1 [50] 574 69.7 79.2 86.9 63.6| 74 83.6 90.1 941 654 |76.1 89.1 95.4 89.7
GPW [51] 65.7 77.0 863 91.2 - |84.1 90.4 940 96.5 - 78.2 90.5 96.0 -
Teacher-Student

RKD [31] 61.4 73.0 819 89.0 - | 82.3 89.8 94.2 96.6 - | 75.1 88.3 95.2 -
Loss+Ensembles

BIER 6 [29] 55.3 672 769 8.1 - |75.0 839 903 943 - |72.7 86.5 94.0 -
HDC 3 [57] 946 668 776 8.9 - |78.0 8.8 91.1 95.1 - |[70.1 84.9 93.2 -
ABE 2 [19] 55.7 679 783 8.5 - |76.8 84.9 90.2 940 - |754 88.0 94.7 -
ABE 8 [19] 60.6 71.5 79.8 874 - |85.2 90.5 940 96.1 - |76.3 884 94.8 -
A-BIER 6 [30] 57.5 68.7 783 862 -~ |820 890 932 961 - |742 869 94.0 -
D and C 8 [39] 65.9 76.6 84.4 90.6 69.6 | 84.6 90.7 94.1 96.5 70.3 |75.9 88.4 94.9 90.2
RLL 3 [50] 61.3 72.7 82.7 89.4 66.1 |82.1 8.3 93.7 96.7 71.8 (79.8 91.3 96.3 904
Ours 2-ensemble| 65.8 76.7 85.2 91.2 68.5 [86.2 91.6 95.0 97.1 91.1|75.9 88.0 94.5 72.6
Ours 5-ensemble|66.9 77.1 85.4 91.5 70.0 88.0 92.5 95.7 97.5 74.2|76.3 88.3 94.6 91.1




Results - Robustness Analysis i

Relative difference w.r.t. Best Recall@1 Effect of the number of classes per batch
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Figure 4: The effect of the number of an- Figure 5: The effect of the number of Figure 6: Recall@1 as a function of training
chors and the number of samples per class.  classes per mini-batch. epochs on Cars196 dataset. Figure adapted
from [1%].

Proxy NCA
One epoch takes 14% less time in CUB, and 8% less time in CARS




Less overfitting and implicit regularization?
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But this is Deep Learning

And we want to learn as much as possible!



Message Passing Framework
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Seidenschwarz et al., Learning intra-batch connections for Deep Metric Learning, ICML 2021



https://arxiv.org/abs/2102.07753

Message Passing Framework
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Results

CUB-200-2011 CARS196 Stanford Online Products
Method BB | R@1 R@2 R@4 R@8 NMI | R@1 R@2 R@4 R@8 NMI | R@1 R@10 R@100 NMI
Triplet®® (Schroff et al., 2015) CVPRIS G | 425 55 664 772 553 | 515 638 735 824 534 | 667 824 91.9 89.5
Npairs®* (Sohn, 2016) NeurIPS16 G | 519 643 749 832 602 | 689 789 858 909 627 | 664 829 92.1 87.9
Deep Spectral®'? (Law et al., 2017) ICMLI17 BNI | 532 66.1 767 852 592 | 73.1 822 890 930 643 | 676 837 93.3 89.4
Angular Loss®'2 (Wang et al., 2017) ICCV17 G | 547 663 76 839 61.1 | 714 814 875 921 632 | 709 850 93.5 88.6
Proxy-NCA®* (Movshovitz-Attias et al., 2017) ICCV17 BNI | 492 619 679 724 595 | 732 824 864 887 649 | 73.7 : = 90.6
Margin Loss!28 (Manmatha et al., 2017) ICCVI7 R50 | 63.6 744 831 900 690 | 79.6 865 919 951 69.1 | 727 862 93.8 90.7
Hierarchical triplet®'2 (Ge et al., 2018) ECCVI18 BNI | 571 688 787 86.5 - 814 880 927 957 - 748 883 94.8 -
ABE®2 (Kim et al., 2018) ECCVIS8 G | 606 715 798 874 z 852 90.5 940 96.1 = 763 884 94.8 z
Normalized Softmax®'? (Zhai & Wu, 2019) BMVC19 R50 | 613 739 835 900 697 | 842 904 944 969 740 | 782 906 96.2 91.0
RLL-H%!? (Wang et al., 2019b) CVPRI9 BNI | 574 697 1792 869 636 | 74 83.6 901 941 654 | 76.1 89.1 95.4 89.7
Multi-similarity>'2 (Wang et al., 2019a) CVPRI9 BNI | 657 770 863 912 . 84.1 904 940 965 5 782 905 96.0 :
Relational Knowledge®'? (Park et al., 2019a) CVPRI9 G | 614 730 819 89.0 - 823 89.8 942 96.6 - 751 883 95.2 -
Divide and Conquer!°2® (Sanakoyeu et al., 2019) CVPRI9 | R50 | 659 766 844 90.6 69.6 | 846 90.7 941 965 703 | 759 884 94.9 90.2
SoftTriple Loss®!2 (Qian et al., 2019) ICCVI9 BNI | 654 764 845 904 693 | 845 907 945 969 70.1 | 783 903 95.9 92.0
HORDE?!2 (Jacob et al., 2019) ICCVI9 BNI | 663 767 847 90.6 2 839 903 941 963 - 80.1 913 96.2 )
MIC!28 (Brattoli et al., 2019) ICCV19 R50 | 66.1 768 85.6 = 69.7 | 826 89.1 932 = 684 | 772 894 95.6 90.0
Easy triplet mining®'? (Xuan et al., 2020b) WACV20 R50 | 649 753 835 - : 827 893 93.0 - - 783  90.7 96.3 -
Group Loss'%2* (Elezi et al., 2020) ECCV20 BNI | 655 770 850 913 690 | 8.6 912 949 970 727 | 751 875 94.2 90.8
Proxy NCA++512 (Teh et al., 2020) ECCV20 R50 | 663 778 877 913 713 | 849 906 949 972 715 | 798 914 96.4 -
DiVAS512 (Milbich et al., 2020) ECCV20 R50 | 69.2 79.3 2 5 714 | 87.6 929 2 - 722 | 79.6 - = 90.6
PADS!28 (Roth et al., 2020) CVPR20 R50 | 673 780 859 z 699 | 835 897 93.8 s 68.8 | 765  89.0 95.4 89.9
Proxy Anchor®!2 (Kim et al., 2020) CVPR20 BNI | 684 792 868 916 - 86.1 917 950 973 - 79.1 908 96.2 :
Proxy Anchor®!2 (Kim et al., 2020) CVPR20 R50 | 69.7 80.0 870 924 - 877 929 958 979 2 800 917 96.6 -
Proxy Few®'? (Zhu et al., 2020) NeurIPS20 BNI | 66.6 776 864 69.8 | 855 91.8 953 - 724 | 780  90.6 96.2 90.2

Ours®!? R50 | 703 803 876 927 740 | 881 933 962 982 748 | 814 913 95.9 92.6




The effect of MPN
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Figure 7. Comparison of the embeddings of a given batch after one
epoch of training without and with MPN.




Regularization effect
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Figure 8. Performance on training and test data of CUB-200-2011
compared to Group Loss (Elezi et al., 2020).



More results

CUB-200-2011 CARS196
Training Losses Test Time Embeddings R@1 NMI R@1 NMI
Cross-Entropy Backbone Embeddings 67.5 69.8 84.2 68.7
MPN Loss Backbone Embeddings 68.1 72.0 87.2 72.1
MPN Loss + Auxiliary Loss Backbone Embeddings 70.3 74.0 88.1 74.8
MPN Loss + Auxiliary Loss MPN Embeddings 70.8 74.5 88.6 76.2

Table 3. Performance of the network with and without MPN during

training and testing time. We achieved all results using embedding
dimension 512.
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CUB-200-2011 Cars196 Stanford Online Products  In-Shop Clothes
R@1 NMI | R@l NMI | R@1 NMI R@1

GL 65.5 69.0 85.6 727 | 75.7 91.1 -

Ours 70.3 74.0 88.1 748 | 814 92.6 92.8

GL2 65.8 68.5 86.2 726 | 759 91.1 -

Ours2 | 72.2 74.3 909 749 | 81.8 92.7 92.9

GL5 66.9 70.0 88.0 742 | 763 91.1 -

Ours 5 | 73.1 74.4 91.5 754 | 82.1 92.8 934

Table 4. Performance of our ensembles and comparisons with the
ensemble models of (Elezi et al., 2020).



Thanks for attending and sorry for the talk being virtual.
Many other metric learning methods could not have been
covered because of the timing.

Some of the losses presented here could be massively
improved by adding a few simple tricks (Group Loss ->
Group Loss ++, Proxy NCA -> Proxy NCA ++), will be covered
by Jenny in the next talk.



