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in practice
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Anchor a

Negative n

Margin loss2 (Joint optimization):

● Learning informative embedding space requires to 
“arrange” data under

● Naturally formulate the learning problem as 
orderings “A is closer to B then C”

2 Wu et al. 2017
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Ranking-based DML Multi-Similarity Loss4:

Informative pair mining:

anchor to negatives in batch

anchor to positives in batch

“positive less similar to anchor than best negative”

“negative more similar to anchor than worst positive”

● So far: Per sample in batch: form a single triplet 
          

● Use all possible relations within batch for learning!

relations

relations

4 Wang et al. 2019
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select closest negative

Anchor
Positive

• Infeasible amount of triplets to learn from (Scale            )

• Fixed sampling heuristics:

- (Semi-)Hard negative mining [Schroff et al. 2015]

Negative Sampling in Ranking-based DML

• May suffer from unstable gradients due to focus
on hardest negatives only
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• Fixed sampling heuristics:
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• Infeasible amount of triplets to learn from (Scale            )

• Fixed sampling heuristics:

- (Semi-)Hard negative mining [Schroff et al. 2015]

- Distance-weighted sampling [Wu et al. 2017]

                                

• Drawbacks: 

- Predefined and independent of DML optimization

- Fixed and disconnected from learning process

    (see Curriculum Learning)

- Optimal distribution             ?

Anchor
Positive

distance-based 
sampling probability

Negative Sampling in Ranking-based DML
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DML optimization

Negative Sampling in Ranking-based DML

Flexible Sampling distributionFlexible Sampling distribution PADS:Policy-adapted Sampling5

5 Roth, Milbich et al. 2020
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Flexible Sampling distribution

Adaptive Negative Sampling using Reinforcement Learning DML optimization

Policy Network

Negative Sampling in Ranking-based DML

Validation set

reward: performance gain

distribution change

5 Roth, Milbich et al. 2020

PADS:Policy-adapted Sampling5
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Classification-based DML

Normalized Softmax Loss : L2 normalize Temperature 
scaling

● Classification is “classical” approach 
to representation learning

● Rows of weights matrix         act as 
class distribution proxies

 alleviate the sampling problem 
of ranking-based methods

● (Connections to Proxy-based DML)

Classification as competitive baseline6:
● Regularize embedding space to 

hyphersphere
● Temperature scaling to enforce 

compact intra-class clusters

6Zhai, Wu et al. 2019
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● Now: Express learning constraints explicitly as
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Classification-based DML

● We now optimize the angles         between            and 
● Introduce a margin     similar to Ranking-based DML

Sphere7-/ArcFace8 Loss:
fixed margin

● So far, we optimize actual distances (e.g. Euclidean, 
 Cosine) between data samples/proxies

● Now: Express learning constraints explicitly as
 actual angles on (Hyphersphere-)Manifold

● very popular for Face recognition applications

7Liu et al. 2018; 8Deng, Guo et al. 2019

● Constrain                       and



Classification-based DML

Sphere7-/ArcFace8 Loss:● So far, we optimize actual distances (e.g. Euclidean, 
 Cosine) between data samples/proxies

● Now: Express learning constraints explicitly as
 actual angles on (Hyphersphere-)Manifold

● very popular for Face recognition applications

Many different extensions based on this formulations!

7Liu et al. 2018; 8Deng, Guo et al. 2019
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overall performance.

● Naive approach: Independently train K different models
using the same, standard discriminative loss 

● Assumption: Aggregation over different embeddings increases
model robustness. 
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shared!

● Learner ensembles are common approach to improve
overall performance.

● Naive approach: Independently train K different models
using the same, standard discriminative loss 

● Assumption: Aggregation over different embeddings increases
model robustness. 

“Learner 1”

“Learner 2”

“Learner 3”
Feature Extractor Sharing:
- mitigate computational overhead
- each learner benefits from strong
  feature representation
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● Learner ensembles are common approach to improve
overall performance.

● Naive approach: Independently train K different models
using the same, standard discriminative loss 

● Assumption: Aggregation over different embeddings increases
model robustness. 

BIER: Adversarial Decorrelation [Opitz et al. 2018]:
encourage learners to focus on different features 

Feature Extractor Sharing:
- mitigate computational overhead
- each learner benefits from strong
  feature representation

 

BIER: Online Gradient Boosting [Opitz et al. 2018]: 
implicit specialization of learners

 



Ensemble-based DML
● Typically training distribution is multimodal
● Explicit data specialization of learners following Divide & Conquer strategy9
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Image space

Image space

9Sanakoyeu, Tschernetzski, Büchler, Ommer 2019
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● ImageNet pretraining
● warmup epochs
● …

Conquer: aggregate learners

Image space

Image space

9Sanakoyeu, Tschernetzski, Büchler, Ommer 2019

● Typically training distribution is multimodal
● Explicit data specialization of learners following Divide & Conquer strategy9
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Postprocessing: Joint global finetuning of concatenated 
learners to improve consistency of embeddings.
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Image space
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Postprocessing: Joint global finetuning of concatenated 
learners to improve consistency of embeddings.

9Sanakoyeu, Tschernetzski, Büchler, Ommer 2019

● Typically training distribution is multimodal
● Explicit data specialization of learners following Divide & Conquer strategy9
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class 1
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class 3

● Typically training distribution is multimodal
● Explicit data specialization of learners following Hierarchical Divide & Conquer strategy10

 

Sequential Splitting: Continuous specialization by 
splitting data and adding learners during optimization

10Sanakoyeu, Ma, Tschernetzski, Ommer 2021
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Target similar object features! 
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Class-discriminative features 
• capture features separating between classes
• aggregate features into ‘classes’
• very specialized
• e.g. “Ferrari” vs. “Hummer”

.

.
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● Assumption: Different features improve robustness to OOD data (new classes, etc.)
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Learn about different/more general features?
● color
● shape
● viewpoint
● ….
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Class-discriminative features 
• capture features separating between classes
• aggregate features into ‘classes’
• very specialized
• e.g. “Ferrari” vs. “Hummer”

● Assumption: Different features improve robustness to OOD data (new classes, etc.)
● Only class-labels available: use unsupervised learning
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11Roth, Brattoli, Ommer 2018

MIC: Mining inter-class 
characteristics11

feature 
standardization
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intermediate
representation

surrogate labels

Class-discriminative features 
• capture features separating between classes
• aggregate features into ‘classes’
• very specialized
• e.g. “Ferrari” vs. “Hummer”

11Roth, Brattoli, Ommer 2018

Inter-class characteristics11 
• anchors and positives from same cluster
    (different class labels!)
• represent inter-class characteristics, 
    e.g. viewpoint, color, etc.

represent 
inter-class 
characteristics MIC: Mining inter-class 

characteristics11

feature 
standardization

Adversarial   DecorrelationAdversarial   Decorrelation

● Assumption: Different features improve robustness to OOD data (new classes, etc.)
● Only class-labels available: use unsupervised learning
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- Explicitlt sample anchor and positive from
  DIFFERENT classes!
- Can be achieved by simply changing triplet sampling

Adversarial   Decorrelation

Class-discriminative features 
• capture features separating between classes
• aggregate features into ‘classes’
• very specialized
• e.g. “Ferrari” vs. “Hummer”

12Milbich, Roth, Brattoli, Ommer 2020

Class-shared features12 
• anchors and positives from different classes
• represent shared, general object 

characteristics

● Assumption: Different features improve robustness to OOD data (new classes, etc.)
● Only class-labels available: use unsupervised learning
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Class-discriminative features 
• capture features separating between classes
• aggregate features into ‘classes’
• very specialized
• e.g. “Ferrari” vs. “Hummer”

Adversarial   Decorrelation

12Milbich, Roth, Brattoli, Ommer 2020

Class-shared features12 
• anchors and positives from different classes
• represent shared, general object 

characteristics

● Assumption: Different features improve robustness to OOD data (new classes, etc.)
● Only class-labels available: use unsupervised learning
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features 

class 1
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class 3

13Milbich, Roth, Bharadhwaj, Sinha, Y.Bengio, Ommer, Cohen 2021

● DiVA13 :Diverse Visual Feature Aggregation:
Multi-task ensemble with each learner
focussing on complementary features
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● DiVA13 :Diverse Visual Feature Aggregation:
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Sample-Specific 
Features
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DaNCE loss: 
Distance adapted NCE Loss

● DiVA13 :Diverse Visual Feature Aggregation:
Multi-task ensemble with each learner
focussing on complementary features
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Intra-Class Features

Sample-Specific 
Features

class 1
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class 3

Class-shared features
Class-discriminative 
features 

2 tasks

3 tasks
4 tasks

● DiVA13 :Diverse Visual Feature Aggregation:
Multi-task ensemble with each learner
focussing on complementary features

 

DaNCE loss: 
Distance adapted NCE Loss

13Milbich, Roth, Bharadhwaj, Sinha, Y.Bengio, Ommer, Cohen 2021
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Ensemble-based DML

● S2SD14: Learn ensemble of teachers and distill their ‘knowledge’ into student
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Ensemble-based DML

● S2SD14: Learn ensemble of teachers and distill their ‘knowledge’ into student
● use different embedding dimensionalities for teachers to increase robustness of student

 

14Roth, Milbich, Ommer, Cohen, Ghassemi 2021

“Teacher 1”

“Teacher 2”

“Teacher 3”

“Student”

Independent DML optimization

Knowledge distillation: 
enforce consistent similarity matrices





Visual Similarity Learning

Given data distribution          , infer pairwise  semantic similarity.

 

Input space (Images)

Infer pairwise similarity



Infer pairwise similarity

Similarity?
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Viewpoint

Class

Given data distribution          , infer pairwise  semantic similarity.
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Infer pairwise similarity

indicated by class labels 

Similarity?

similar

dissimilar

similar

dissimilar

similar

dissimilar
Color

Viewpoint

Class

Given data distribution          , infer pairwise  semantic similarity.
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similar

dissimilar

similar

dissimilar
Color

Viewpoint

Class

Learn representation          which reflects semantic 
similarity                            within training distribution         .
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class 1
class 2

class 3

class 1

class 3

class 2

cluster 1

cluster 3

cluster 2

intermediate
representation

surrogate labels

Adversarial   Decorrelation

Class-discriminative features 
• capture features separating between classes
• aggregate features into ‘classes’
• very specialized
• e.g. “Ferrari” vs. “Hummer”

● Typically there are different notions of similarity (classes, color, viewpoint, …)
● Assumption: Different features improve robustness to OOD data (new classes, etc.)
● Explicit similarity specialization of learners
● Only class-labels available: use unsupervised learning

 

represent 
inter-class 
characteristics

Inter-class characteristics11 
• anchors and positives from same cluster
    (different class labels!)
• represent inter-class characteristics, 
    e.g. viewpoint, color, etc.

11Roth, Brattoli, Ommer 2018

MIC: Mining inter-class 
characteristics11

feature 
standardization



Embedding space

Learn representation     which reflects 
semantic similarity within training 
distribution         .
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Representation Learning

Learning Visual Representations

Learn representation          which reflects semantic similarity 
within training distribution         .

 

Deep Metric 
Learning (DML)

Classification

Surrogate Tasks

Input space (Images)
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Embedding space

Learn representation     which reflects 
semantic similarity within training 
distribution         .
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Class 2

Class 3

Class 4

Learning Visual Representations
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Introduction DML

              Model Architecture

• Backbone architecture

• Embedding dimensionality

• Basic Regularization

• Batchsize

• etc.

             Objective Function

• Formulation:
○ Ranking-based
○ Proxy-based
○ Classification-based

• Task-specific regularization

• etc.

               Data Sampling

• Batch sampling

• Triplet, Pair, Tupel sampling

• data synthesis

• etc.

OOD Generalization?



(Out-Of-Distribution-Generalization) 
How well does     capture unseen classes, unknown surroundings, 
viewpoints, continual class changes?

 ?
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Learning Visual Representations
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(Out-Of-Distribution-Generalization)  
How well does     capture unseen classes, unknown surroundings, 
viewpoints, continual class changes?

Evaluation needs to consider broad range of 
test distributions and difficulty.

 

?

Input space (Images)

Learning Visual Representations

Encode



854 PADS: Policy-Adapted Sampling for Visual Similarity Learning, CVPR 2020

Flexible Sampling distribution

Adaptive Negative Sampling using Reinforcement Learning DML optimization

training
state

Negative Sampling in Ranking-based DML
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Flexible Sampling distribution

Adaptive Negative Sampling using Reinforcement Learning DML optimization

distribution change

Negative Sampling in Ranking-based DML



874 PADS: Policy-Adapted Sampling for Visual Similarity Learning, CVPR 2020

Flexible Sampling distribution

Adaptive Negative Sampling using Reinforcement Learning DML optimization

Validation set
reward: performance gain

Negative Sampling in Ranking-based DML
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3 Roth, Milbich et al.; ICML 2021; S2SD: Simultaneous Similarity-based Self-distillation for Deep Metric Learning

Ensemble-based DML



Ensemble-based DML

● Shared Features, DiVA, MIC (complementary semantics, 
“multi-task learning”)

● explicit specialization of learners (semantics)

 



• Diverse Feature Aggregation2

• Multi Self-Distillation

• Proxy-Learning

• ...
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class 3

class 2

Intra-Class 
Features

Sample-Specific 
Features

Shared 
Features

Discriminative 
Features

2 Milbich, Roth et al.; ECCV 2020; DiVA: Diverse Visual Feature Aggregation for Deep Metric Learning

Overview: Typical Learning Concepts for DML Generalization
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Overview: Typical Learning Concepts for DML Generalization


