The Family of Objective Functions in DML

CVPR Tutorial: Deep Visual Similarity and Metric Learning

Timo Milbich

Technical
LUDWIG- University
MAXIMILIANS-
UNIVERSITAT of Munich

MUNCHEN




Visual Similarity Learning

Learn representation ¢(z) which reflects semantic

similarity d(¢(z:), ¢(z;)) within training distribution A, i

Batch)

Encoder f
s.a. ResNet50, Inception-BN

Input space (Images)

Embedding space
d =SV z{zERD:HzH% =1}.




Deep Metric Learning (DML)

Learn representation ¢(z) which reflects semantic
similarity d(¢(z;), #(x;)) within training distribution X,.;,.

Input space (Images)

Batch)

Encoder f

s.a. ResNetb0, Inception-BN

______
_____

Ranking-based DML

Classification-based DML

Proxy-based DML

Contextual DML

Ensemble-based DML

Others




Deep Metric Learning (DML)

Learn representation ¢(z) which reflects semantic
similarity d(¢(z;), #(x;)) within training distribution X,.;,.

Ranking-based DML

Classification-based DML
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Encoder f

s.a. ResNetb0, Inception-BN
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Ensemble-based DML

Input space (Images)



Ranking-based DML



Ranking-based DML

® Learning informative embedding space requires to
“arrange” data under ¢(z)




Ranking-based DML

® Learning informative embedding space requires to
“arrange” data under ¢(z)

‘“arrange”
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Ranking-based DML

Learning informative embedding space requires to

“arrange” data under ¢(z)
Naturally formulate the learning problem as
orderings “A is closer to B then C”

Formulate ordering tasks: is closer to than
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Ranking-based DML

Learning informative embedding space requires to
“arrange” data under ¢(z)

Naturally formulate the learning problem as
orderings “A is closer to B then C”

Formulate ordering tasks:

is closer to

‘“arrange”




Ranking-based DML

® Learning informative embedding space requires to
“arrange” data under ¢(z)

e Naturally formulate the learning problem as
orderings “A is closer to B then C”

Triplet loss': t = {z4, zp, 0 }

etriplet(a,p, n) — ||¢(aja) — (b(.’,vp)“g — ||¢(33a) - ¢($n)||§

Triplet Loss

1 Weinberger et al. 2006; Schroff et al. 2015



Ranking-based DML

Triplet loss': t = {z4, zp, 0 }

£ (a, p,n) = max(||¢(za) — ¢(@p)ll; — [[6(za) — d(za)ll; + a,0)

® Learning informative embedding space requires to T
“arrange” data under ¢(z) |
e Naturally formulate the learning problem as fixed margin

orderings “A is closer to B then C”

Triplet Loss

1 Weinberger et al. 2006; Schroff et al. 2015



Ranking-based DML

® Learning informative embedding space requires to pmarging; o _ = 47
“arrange” data under ¢(z) (5,5) := (e + 43 (Dig = B)) .-

e Naturally formulate the learning problem as fixed marginI ‘Iearned margin parameter
orderings “A is closer to B then C” B(5) = O + gL 4 plime)

Margin loss?:
grPlet (o p on) = U')2 — e ('1}7

ap an

S

2Wu et al. 2017



Ranking-based DML

Margin loss? (Joint optimization):

minimize Z f“”argi“(z‘, j)+v (5(0) + ﬁiz?ss) n 5;img)>

® Learning informative embedding space requires to (i,7)
arrange” data under ¢(z) | moEin ;5 = (a+ yi;(Dig — B)),
e Naturally formulate the learning problem as o, SR
orderings “A is closer to B then C” B@) =B+ By~ +5;

S

2Wu et al. 2017



Ranking-based DML

® Learning informative embedding space requires to

“arrange” data under ¢(z)
e Naturally formulate the learning problem as
orderings “A is closer to B then C”

S

2Wu et al. 2017

Margin loss? (Joint optimization):

minimize Z grmatein(s §) v ( B0 4 3
(4,4)

(class)

c(7)

B(Z) g B(O) +6£2?SS) " mg)

4 55img)>




Ranking-based DML

e So far: Per sample in batch: form a single triplet

o——O O—~A0O4 0O0—0O0

X1 X9 X3 X4 X5 X6
(a) Contrastive embedding O(B ) relations
O O O O O O
X1 X2 X3 X4 X5 X6
(b) Triplet embedding

Images partly taken from: Song et al. 2015



Ranking-based DML

e So far: Per sample in batch: form a single triplet

e Use all possible relations within batch for learning!

Images partly taken from: Song et al. 2015

o——O O——~A0O4 0O0—0O0

X1 X2 X3 X4 X5

(a) Contrastive embedding

O O O O O

X6

X1 X2 X3 X4 X5

(b) Triplet embedding

(c) Lifted structured embedding

O(B) relations

O(B?) relations



Ranking-based DML

Lifted Structures Feature Embedding Loss> :

e So far: Per sample in batch: form a single triplet Jodi=1log (( %:Nexp{a —Dix}+ ( IE):V‘*XP{“ - DJ'J}) +Di;
i?" € Jv EJ
s 1 s D
. . . . . ,] _—— < 0! ']'l.." 3
e Use all possible relations within batch for learning! 2P| (”Z);Pmdx( ' J)

o0——=C0 oO—~oO o——-—oO0

X1 X9 X3 X4 X5 X6
(a) Contrastive embedding O(B ) relations
O O O O O O
X1 X2 X3 X4 X5 X6
(b) Triplet embedding

O(B?) relations

(c) Lifted structured embedding

3Song et al. 2015



Ra n kl n g- b a Se d D M L Lifted Structures Feature Embedding Loss> :

anchor to all negatives in batch positive to all negatives in batch

\
Ji.j =log ( Z exp{a — D; } H Z exp{a — D;.}|| HD:;

e So far: Per sample in batch: form a single triplet

(i,k)EN (G,1)EN y
]~ 1 0 ] 2
e Use all possible relations within batch for learning! Y (”Z);Pmdx w) )

o0——=C0 oO—~oO o——-—oO0

X1 X2 X3 X4 X5 X6

O(B) relations

(a) Contrastive embedding

O O O O O O

X1 X9 X3 X4 X5 X6

(b) Triplet embedding

O(B?) relations

(c) Lifted structured embedding

3Song et al. 2015



Ranking-based DML

e So far: Per sample in batch: form a single triplet

e Use all possible relations within batch for learning!

* Wang et al. 2019

Multi-Similarity Loss*:

1 (1
S - —CM(SI'-—)\
/JMs——E {alog[l%—E:e =M

i=1 kEP;
-l-llog 14 Z eﬂ(s"’“_’\)] }
B kEN;

anchor to negatives in batch

o——-—oO0 Oo——0 o——-—oO

X1 X2 X3 X4 X5 X6
(a) Contrastive embedding

O O O O O O

X1 X9 X3 X4 X5 X6

(b) Triplet embedding

(c) Lifted structured embedding

O(B) relations

O(B?) relations



Ranking-based DML

e So far: Per sample in batch: form a single triplet

e Use all possible relations within batch for learning!

Multi-Similarity Loss*:

m

1 1
Lys = EZ{—log [1+

«
i=1

Z e—a(Sik - ]

N

-l—llog [1 +

Z e,B(Sik—)\)]

B keN;

}.

* Wang et al. 2019

anchor to negatives in batch

Informative pair mining:

Sz'; < max Szk + €. “positive less similar to anchor than best negative”
YeFYi

Sz; > min Szk — €, ‘negative more similar to anchor than worst positive”
Y=Y

o——O O—~A0O4 0O0—0

Xiq X9 X3 X4 X5 X6
(a) Contrastive embedding 0( B ) relations
O O O O O O
X1 X9 X3 X4 X5 X6
(b) Triplet embedding

O(B?) relations

(c) Lifted structured embedding



Negative Sampling in Ranking-based DML
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Negative Sampling in Ranking-based DML

* Infeasible amount of triplets to learn from (Scale O(n?) )

&
e Fixed sampling heuristics: {é%@
- (Semi-)Hard negative mining [Schroff et al. 2015] oogf?
n* =arg min d_ 3
n:dan>dap %
o%go
O(éﬁ owggg 6o
OO 0(9
%’ ©o %6
SR H 8,




Negative Sampling in Ranking-based DML

* Infeasible amount of triplets to learn from (Scale O(n?) )

Q@
e Fixed sampling heuristics: oﬁgiﬁ
- (Semi-)Hard negative mining [Schroff et al. 2015] Ooéf
n* =arg min d_ 3
n:d,, >d, %
* May suffer from unstable gradients due to focus o%go
on hardest negatives only 02% °oo%%§’ S
°o o
%’ Co %)6
&R e 0 I
TRE S 8.



Negative Sampling in Ranking-based DML

* Infeasible amount of triplets to learn from (Scale O(n?) )

Q@
e Fixed sampling heuristics: ofé%c@ Anchor
O
- Distance-weighted sampling [Wu et al. 2017] Ooo°§
’I’L* Np(In‘Ia) :p(dan) 0 o
% S o
§ Q% o (x)OO
distance-based _o &, @Woo  © %
. o, ,%0 S& 0% 0 4
sampling probability ®og o0 G
0 o0 e o
8o P 0%
-~ %wo % 53%




Negative Sampling in Ranking-based DML

* Infeasible amount of triplets to learn from (Scale O(n?) )

e Fixed sampling heuristics:

- Distance-weighted sampling [Wu et al. 2017]
n* ™~ p(In‘Ia) — p(dan)

* Soften hard negative constraint by uniform
sampling from entire range of distances d,,

O
i - o
dlstan.ce basoed @8‘90 §£ o
sampling probability @oq 0g © %
O

OpoO

@Q’%o % 0%




Negative Sampling in Ranking-based DML

* Infeasible amount of triplets to learn from (Scale O(n?) )

e Fixed sampling heuristics:

- Distance-weighted sampling [Wu et al. 2017]
n* ™~ p(In‘Ia) — p(dan)

* Soften hard negative constraint by uniform
sampling from entire range of distances d,,

gii) 1 | = i =8 RN . o
‘ n=16===sn =32 5.7 Increasing sampling bias!
.
0.05 mame ) = 64 ------- n — 128 ;" Q?“
3 o
0.00 : < : —
0 0.5 1 1.5 2

Distances on hypersphere Dij

(o} (o) o

i - o

dlstan.ce basoed @8‘90 §£ o

sampling probability @oq 0g © %
O
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Negative Sampling in Ranking-based DML

* Infeasible amount of triplets to learn from (Scale O(n?) )

e Fixed sampling heuristics:

- Distance-weighted sampling [Wu et al. 2017]
n* ~ p(In|Ia) X min()‘7Q(dan)_1)

* Soften hard negative constraint by uniform
sampling from entire range of distances d,,

* Uniform distribution on S”: ¢(d) o< d*72[1 — +d?]

k-3
2

gii) 1 | = i =8 RN . o
‘ n=16===sn =32 5.7 Increasing sampling bias!
005 ---e 7L:64 ------- TL:128 :;‘-

0.00 : < : '
0 0.5 1 1.5 2
Distances on hypersphere Dij

O
. _ o
dlstan.ce basoed @3‘90 g,?g;; o
sampling probability @oq




Negative Sampling in Ranking-based DML

* Infeasible amount of triplets to learn from (Scale O(n?) )

e Fixed sampling heuristics:

- Distance-weighted sampling [Wu et al. 2017]
n* ~ p(I,|I,) oc min(\, q(d, )™ 1)

* Soften hard negative constraint by uniform
sampling from entire range of distances d,,

« Uniform distribution on S?: q(d) o< d*2[1 — +d?] =

“Q A\ Uniform sampling
0.8 o Hard negative mining
D Semi-hard negative mining
0.6 1 0 Distance weighted sampling
0.4 +
0.2

0 ° o o)
distance-based _o &, @Woo  © %
. o, ,%0 S& 0o
sampling probability ®og 0g ©
O

OpoO

‘&Q%o % 0%




Negative Sampling in Ranking-based DML

* Infeasible amount of triplets to learn from (Scale O(n?) )

S¢)
e Fixed sampling heuristics: 069(:9(@
- (Semi-)Hard negative mining [Schroff et al. 2015] oog‘f °
- Distance-weighted sampling [Wu et al. 2017] % A % 0
éo% o° o P00

. O
dlstan.ce-basoed @8‘90 i
sampling probability ®og 0g ©

O

O pO

* Drawbacks:
- Predefined and independent of DML optimization

- Fixed and disconnected from learning process

(see Curriculum Learning)

- Optimal distribution p(d,,)?



Negative Sampling in Ranking-based DML

(I, |L) A Flexible Sampling distribution
n a

p{dan = uk} = Pk °Q92?

DML optimization
{Ia7 Ip7 In}
¥ train model

p(In|la)

S Roth, Milbich et al. 2020

AN
JyV



Negative Sampling in Ranking-based DML

(I, |L) A Flexible Sampling distribution
n a

p{dan = uk} = Dk

Adaptive Negative Sampling using Reinforcement Learning

!

update 7Tg

distribution change p(I,|1,)
@ > 1 al )| |2 @ = [a) )i, 2t

| Policy Network

Validation set

reward: performance gain

(__;ather statistics

Pk

DML optimization
{Ia; Ip, In}

¥ train model E

L Qb(aC)I— ol

S Roth, Milbich et al. 2020



Classification-based DML



|” approach

CIaSSification-based D M L e C(Classification is “classica

to representation learning

| Class 1
./ proxy

I I

| I

| I

| I

| I

I I

1 ]

: b e . o :

=) — | P Oﬁ Class 3 :

= proxy |

I : :

I I

I I

| g i ~——— Class 2 :

. proxy I

Class 2 g | Soft L :

centered | Ooltmax Loss 1

Class 3 anbaddiog I =02 e S S SRS SSSRSSSEEEEER
Training

Softmax Loss :

exp(W, ¢(x;))
S exp(W, é(z;))

o(¢(z;)) = — log

Images partly taken from: Zhai, Wu et al. 2019



.« [o . _ e Classification is “classical” approach
Classification-based DML to representation learning
® Rows of weights matrix W}, act as

class distribution proxies

_________________________________

Class 1

o, B~ i % N E —> alleviate the sampling problem
AN 4 | .
— —i T ¢ X Cds3 of ranking-based methods
. ~ _ \"prox | .
: - . ® (Connections to Proxy-based DMVIL)
| [ i L‘ Class 2 E
£ i proxy ¢(z)
= Zero- : :
Class 2 E centered : :
Class 3 Dol e e
3 Training

Softmax Loss :

o($(x:)) = — log | —

Images partly taken from: Zhai, Wu et al. 2019



Classiﬁcatio n_based D M L e C(Classification i.s ”cIassigaI” approach
to representation learning
e Rows of weights matrix W}, act as
class distribution proxies
—> alleviate the sampling problem

Class 3 of ranking-based methods

----------------------------------

2 Class 1
3 ( proxy

Class 1 S
S samples

e — |
I rox .
; - e (Connections to Proxy-based DML)
¥ o (g .
3 | proxy d(z)
= Zero- : I
Class 2 E centered : :
Class 3 Dol e e . o . - .
g Training Classification as competitive baseline®:

e Regularize embedding space to
hyphersphere

Normalized Softmax Loss : L2 normalize

exp(WJ Qb(mz' ))
Zle eXP(WkT¢(33i))

o(¢(zi)) = — log

®Zhai, Wu et al. 2019



Classification-based DML

e® Classification is “classica

IH

to representation learning

----------------------------------

: | Class 1
] -/ proxy

f; Class 1 S
S samples

l , N
I
|
|
| | i L Class 2 .
g | proxy o(z)
Class 2 | Zero- | :
= | centered | 1
Class 3 “>’. ambaddng B @3 2 O NN SR ESEERS S SSNEEES
= Training

® Rows of weights matrix W} act as
: class distribution proxies
— alleviate the sampling problem
Class3 ! of ranking-based methods
. @ (Connections to Proxy-based DMIL)

Classification as competitive baseline®:

e Regularize embedding space to
hyphersphere

e Temperature scaling to enforce
compact intra-class clusters

Normalized Softmax Loss :

exp

L2 normalize

(

-
W,

d(z;

)

d

Temperature
scaling

o(¢(z;)) = — log

> 1 exp(W, (i) /7)

®Zhai, Wu et al. 2019

approach




Classification-based DML

e So far, we optimize actual distances (e.g. Euclidean, i St exp(W, ()
Cosine) between data samples/proxies

® Now: Express learning constraints explicitly as
actual angles on (Hyphersphere-)Manifold

e very popular for Face recognition applications

Euclidean Margin Loss =~ Modified Softmax Loss

Images partly taken from: Liu et al. 2018




Classification-based DML

_ | exp(Wy ¢(:) 2"y = |2l 1yl cos(6)
o , . o(¢p(zi)) = —log | — o
e So far, we optimize actual distances (e.g. Euclidean, Y exp(W) é(x;))
Cosine) between data samples/proxies [ exp(||[W,, || |p(z:)]| cos(8iy,))
e Now: Express learning constraints explicitly as =~ log K exp(| Wil |¢(z:)| COS(QZ.;)) '

actual angles on (Hyphersphere-)Manifold
e very popular for Face recognition applications

Euclidean Margin Loss =~ Modified Softmax Loss

Images partly taken from: Liu et al. 2018



Classification-based DML

e So far, we optimize actual distances (e.g. Euclidean,
Cosine) between data samples/proxies

® Now: Express learning constraints explicitly as
actual angles on (Hyphersphere-)Manifold

e very popular for Face recognition applications

Euclidean Margin Loss =~ Modified Softmax Loss

Images partly taken from: Liu et al. 2018

exp(W,, ¢(z;))

o(¢(z;)) = — log

Sk exp(W ¢(x1))

z'y = [y ]|yll, cos(6)

|,/

= — log

e Constrain |W, || =1 and ||¢(z;)|l, = s

exp(s cos(b;y,

)

o(p(z;)) = —log

K| exp(s cos(

0 1)

>]'

exp(|[W,, | 19(z:)]| cos(61,,) /] |

K exp((|Wil| [l (i) | cos(6i))

® We now optimize the angles 6, ;. between ¢(x;) and W,




Classification-based DML

_ | exp(Wy ¢(:) 2"y = |z, Iyl cos(6)
_ : . o(¢(z;)) = —log | —= oIyl
e So far, we optimize actual distances (e.g. Euclidean, Y exp(W,] ¢ (i)
Cosine) between data samples/proxies - exp(|Wy, || [|¢(z:) || cos(8iy,))
e Now: Express learning constraints explicitly as =~ log K exp(|| Wi [|(z:)]| cos(6; ;)) '
actual angles on (Hyphersphere-)Manifold S |
e very popular for Face recognition applications e Constrain |W, | =1 and |é(zi)], = s

o($(z;)) = —log

exp(s cos(fiy,|)) ]
)

Zszl exp(s cos(0; k)

® We now optimize the angles 6, ;. between ¢(x;) and W,
® Introduce a margin 8 similar to Ranking-based DML

o %
3D Hypersphere
Manifold

A-Softmax Loss (m=2)

Sphere’-/ArcFace® Loss:
fixed margin

exp(s cos@—J» 0iy.))

i);P) = —lo |
7D 8 pr(s cos(B + 0iy,)) + Skt 1 kpy, ©XP(s c08(0; 1))

"Liu et al. 2018; ®Deng, Guo et al. 2019



Classification-based DML
Many different extensions based on this formulations!

e So far, we optimize actual distances (e.g. Euclidean, | Sphere’-/ArcFace® Loss:

Cosine) between data samples/proxies
e Now: Express learning constraints explicitly as

exp(scos(B8+0iy ))
o(¢(z;); B) = —log '
exp(s cos(B + 0iy,)) + Shei psy, XP(5 cos(6i))

actual angles on (Hyphersphere-)Manifold
e very popular for Face recognition applications

3D Hypersphere
Manifold

A-Softmax Loss (m=2)

4
- ——— 10 — — —
[ Negative Pairs [ Negative Pairs [ Negative Pairs [ Negative Pairs
[ Positive Pairs 8 [ Positive Pairs |1 [ Positive Pairs [ Positive Pairs
2 4 max angle (pos. pairs): 1.71 oo max angle (pos. pairs): 0.94 » 10 max angle (pos. pairs): 0.54 4 10 max angle (pos. pairs): 0.48
3 min angle (neg. pairs): 0.30 ~§ 6 min angle (neg. pairs): (.82 'E min angle (neg. pairs): 1.07 é min angle (neg. pairs): 1.14
= angular margin: -1.41 =™ angular margin: -0.12 o angular margin: 0.53 e angular margin: 0.66
#® 5| 8 ] 3 4 1 T+ # o ]
b 5
0 . 0 b 0 0
0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 25 3 35 0 0.5 1 1:5 2 25 3 35 0 0.5 1 L5 2 25 3 35
Angle Angle Angle Angle
A-Softmax (m=4)

A-Softmax (m=2) A-Softmax (m=3)

A-Softmax (m=1)

“Liu et al. 2018; ®Deng, Guo et al. 2019



Ensemble-based DML



Ensemble-based DML

® Learner ensembles are common approach to improve
overall performance.

class 1

class 2

->—>_> ¢

Encoder f ‘+.+"class 3
s.a. ResNet50, Inception-BN




Ensemble-based DML

® Learner ensembles are common approach to improve
overall performance.

e Naive approach: Independently train K independent models
using the same, standard discriminative loss L.

disc

e

Encoder f
CIaSS 1 s.a. ResNet50, Inception-BN

class 2

disc

shebalini:

Encoder f

s.a. ResNet50, Inception-BN

e

Encoder f

s.a. ResNet50, Inception-BN

disc

» * class 3



Ensemble-based DML

® Learner ensembles are common approach to improve
overall performance.
e Naive approach: Independently train K different models
using the same, standard discriminative loss L.
e Assumption: Aggregation over different embeddings increases

model robustness.
il BN

Encoder f N
CIaSS 1 s.a. ResNet50, Inception-BN \\
class 2

oo

""* g .o

Encoder f

s.a. ResNet50, Inception-BN

class 3

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
— ) —) 3

Encoder f

s.a. ResNet50, Inception-BN




Ensemble-based DML

® Learner ensembles are common approach to improve
overall performance.
Naive approach: Independently train K different models
using the same, standard discriminative loss L.
Assumption: Aggregation over different embeddings increases &

model robustness.

class 1

class 3

Encoder f

s.a. ResNet50, Inception-BN

shared!

Feature Extractor Sharing:

- mitigate computational overhead

- each learner benefits from strong
feature representation

ce-_S
class 1 +" "t . * O Edisc
—¢1 ﬁG s 2
. . C
*«.s"class 3

disc

“Learner 2” Te.+"class 3
—3 & S |
class1 ,° @ Lt disc
“Learner 3" 6 S class 2
*+.+"class 3



Ensemble-based DML

® Learner ensembles are common approach to improve
overall performance.

e Naive approach: Independently train K different models
using the same, standard discriminative loss L.

e Assumption: Aggregation over different embeddings increases
model robustness.

class 1 ;
class 2

\ . BIER: Online Gradient Boosting [Opitz et al. 2018]:
Encoder f T T[T claesd implicit specialization of learners

s.a. ResNet50, Inception-BN

Training Set Training Set Training Set

Feature Extractor Sharing:

- mitigate computational overhead

- each learner benefits from strong
feature representation




Ensemble-based DML -

g .

® Learner ensembles are common approach to improve "I M (H‘dden Layer) \‘\
overall performance. T i

e Naive approach: Independently train K different models Y
using the same, standard discriminative loss gre ““Cl‘:\;f‘c““l 5 . . 4 g"a‘li‘*l‘;,gj“"’l'“"‘l

e Assumption: Aggregation over different embeddings increases & T :
model robustness. : [ Cosn; n] @ ( T ) [_ 8£Si“‘(i,.'i)]

% a(’fl o 09y,
e s [ T “Taaae |

class 1

_BIER: AdVersariaI Decorrelation [Opitz et al. 2018
encourage learners to focus on different features

class 2

. B[ER: Online Gradient Boosting [Opitz et al. 2018]:
Encoder f "o class3 _implicit specialization of learners

s.a. ResNet50, Inception-BN

""""""""""" Training Set Training Set Training Set

(5) reweight
with gradient

—_—
.. ; y (2) (()lll[)lll( A Bacloron o )mpnl( (7) backprop (6) compute N baekioron
Feature Extractor Sharing: 6@ A + h”k” ........... HHMI ..... : H(“k”
. . . - class 2 ; ;
- mltlgate computatlonal Overhead ., .. ( Learner 1 J ( Learner 2 J ( Learner 3 J
- each learner benefits from strong "+-+"class3 —_— e :

feature representation



Ensemble-based DML

e Typically training distribution is multimodal
e Explicit data specialization of learners following Divide & Conquer strategy®

Divide: partition training data Conquer: aggregate learners

> >

Image space ¢3 - Edisc

9Sanakoyeu, Tschernetzski, Biichler, Ommer 2019




Ensemble-based DML

Typically training distribution is multimodal
Explicit data specialization of learners following Divide & Conquer strategy®

Compute Embeddlng

Embeddmg
class 2 p—r

I . I Clustermg

................................

Conquer: aggregate learners

>

V

e ImageNet pretraining

Image space e warmup epochs ¢3 Ldisc

9Sanakoyeu, Tschernetzski, Biichler, Ommer 2019




Ensemble-based DML

Typically training distribution is multimodal
Explicit data specialization of learners following Divide & Conquer strategy®

Compute Embeddlng ’ - RS Train ‘

class 2 Embeddmg Embedding

-!! ; = : fi! Learner 1 E
‘ Clustermg § chamcr 2 | -
E E : L disc
ey i ' 5
7 o : Learner K

T . class 3 ] §
traln @@ a0 00 oo ‘ " S '

o |

V

Image space

Shared Weights

Postprocessing: Joint global finetuning of concatenated
learners to improve consistency of embeddings.

9Sanakoyeu, Tschernetzski, Biichler, Ommer 2019



Ensemble-based DML

Typically training distribution is multimodal
Explicit data specialization of learners following Divide & Conquer strategy®

0 10 20 30 40 50 60 70 80

#Epochs
Compute Embeddlng - RS Tran ‘
Embedding ! = | : Embedding :
class 2 _ e

fi! Learner 1

Learner 2 E

V

disc

Learner K

Layer : l 5 ‘A 1 < =, -
I Clusterlng
: i Image space

T . class 3 = :
rall @ a0 e ‘ " Shemenms A A e :

o |

Image space

Shared Weights

Postprocessing: Joint global finetuning of concatenated
learners to improve consistency of embeddings.

9Sanakoyeu, Tschernetzski, Biichler, Ommer 2019



Ensemble-based DML

e Typically training distribution is multimodal

e Explicit data specialization of learners following Hierarchical Divide & Conquer strategy'®

——> Metric learning (training) s P Joint data and embedding space division
I
Compute Embedding .B ““““““““ C

"""""""""""""""""""""" el
' Embeddin A
class 2 ! 8_ C .

ayer ' Embedding C]( 1 )‘ ‘, . 8 “““““‘a\‘

Backbone layer ““y *
‘ . . o cPw

Clusterl Metric learning Division 2 “lh

. %,
ao @8-+ .7

Training data X A B f( D | v C
= (2)
< O Vi "
; o 4
class 3 OB .D O
G A A R B D s Ry e D L "'.,,A P
1
1 Clg?) (4 A
\
¥ s S Step t=0 Step t=1 Step t=2
] |
I I T

Sequential Splitting: Continuous specialization by
splitting data and adding learners during optimization

19Sanakoyeu, Ma, Tschernetzski, Ommer 2021



Ensemble-based DML
Target similar object features!

t= oD T} [ |-
Yo = Yp # Yo | _USC
capture features separating between classes

aggregate features into ‘classes

class 1
=L > = —>
Encoder f °
s.a. ResNet50, Inception-BN
[ ]
‘ J very speC|aI|zed
o || e e.g. “Ferrari” Hummer
Adversarial T Decorrelation
. @\@‘:’Q‘ t - {Im } L ;’I
_ disc
Yo = Yp # Yn

¢
class 1
ﬁG . cIassZ
S

.

* class 3

.
4 g




Ensemble-based DML

e Assumption: Different features improve robustness to OOD data (new classes, etc.)

t=A{l., 1, 1I,}

> E .
Yo = Yp 7§ Un disc

class 1 \

Encoder f

s.a. ResNet50, Inception-BN

capture features separating between classes
* aggregate features into ‘classes’

e very specialized

e e.g. “Ferrari” vs. “Hummer”

Adversarial T Decorrelation

— ¢ oe\@:@s = oy} [

class 1 Yo = Yp 7& yn
ﬁG . class 2
S

. *» “class 3

disc

Learn about different/more general features?
e color
e shape
e viewpoint
o




Ensemble-based DML

e Assumption: Different features improve robustness to OOD data (new classes, etc.)

® Only class-labels available: use unsupervised learning

class 1 \
11 4

Encoder f

s.a. ResNet50, Incepti

Surrogate task

intermediate _l
representation e

class 3

feature A
standardizgti

’

'
represent ;
inter-class -
characteristics ('E
1

)

.

11Roth, Brattoli, Ommer 2018

AdversariaIT Decorrelation

— ¢

MIC: Mining inter-class
characteristics”

t=A{l., 1, 1I,}

L

Ya = Yp #* y,,:

disc

Class-discriminative features

capture features separating between classes
aggregate features into ‘classes’

very specialized

e.g. “Ferrari” vs. “Hummer”



Ensemble-based DML

e Assumption: Different features improve robustness to OOD data (new classes, etc.)
® Only class-labels available: use unsupervised learning

class 1 \ t={I,,1,

= PP — disc
class 1 @ Ya = Yp 7é yn
ﬁ . class 2 < s s .
intermediate ! . Class-discriminative features
Reﬁggg‘ﬁp{: representation e+ class 3 * capture features separating between classes
* aggregate features into ‘classes’
Surrogate task e very specialized
e e.g. “Ferrari” vs. “Hummer”
¢2 . e\e@ﬁg‘ t — {Ia7 } L
feature S cluster 4 o " Cy = C ?é c surrogate
standardiza 6® — Cp n
. Cluster2
r——=—=-=-=- > ‘

.

| vt eluster 3 Inter-class characteristics'’
| ¢ anchors and positives from same cluster

represent : ! (different class labels!)
?ﬁﬁiﬁf‘jﬁsﬁcs : : -t e represent inter-class characteristics,
|"' = i( MIC: Mining inter-class e.g. viewpoint, color, etc.
‘.. UM% /| characteristics™

Roth, Brattoli, Ommer 2018 ~ ~  |——==========



Ensemble-based DML

e Assumption: Different features improve robustness to OOD data (new classes, etc.)
® Only class-labels available: use unsupervised learning

t = {Ia,Ip,In}
Ya = Yp #* ynV

L

disc

class 1 \

Encoder f

s.a. ResNet50, Inception-BN

e capture features separating between classes
* aggregate features into ‘classes’

e very specialized

e e.g. “Ferrari” vs. “Hummer”

Class-shared features'?
¢ anchors and positives from different classes

e represent shared, general object
characteristics

t = {Ia,fp,fn}
Ya #yp #yn ]

‘C shared

- Explicitlt sample anchor and positive from
DIFFERENT classes!
- Can be achieved by simply changing triplet sampling

12Milbich, Roth, Brattoli, Ommer 2020



Ensemble-based DML

® Only class- Iabels available: use unsupervised learning

t= {Iaal 7In}
S Edisc
Ya = Yp Z* Yn

— e )

%

Encoder f
s.a. ResNet50, Inception-BN

class 1 \
‘} » ‘ o1

Class-discriminative features

* class 3 * capture features separating between classes
* aggregate features into ‘classes’

* very specialized

e e.g. “Ferrari” vs. “Hummer”

Class-shared features!?
¢ anchors and positives from different classes
e represent shared, general object

Q characteristics
J t:{Iaalp7In} E

) .cl-a‘s; 2 Ya 7é yp 7£ Yn ] shared

— ¢

12Milbich, Roth, Brattoli, Ommer 2020



Ensemble-based DML

e DIiVA® :Diverse Visual Feature Aggregation:
Multi-task ensemble with each learner
focussing on complementary features

.
*
* — * *
* - *
~ g .
. = .
L ] - *
.
- ™
- —r— "
. n
\d - «
* S
*.class 3 .-
*
. .

G
LI T

R
Class-discriminative ’
features Class-shared features

\ ya:yp?‘éyn ‘ ‘ ya#yp#yn

Encoder f

s.a. ResNet50, Inception-BN

13Milbich, Roth, Bharadhwaj, Sinha, Y.Bengio, Ommer, Cohen 2021



Ensemble-based DML

e DIiVA® :Diverse Visual Feature Aggregation:
Multi-task ensemble with each learner
focussing on complementary features

.
*
* — * *
* = *
~ g .
L] = Y
" . .
.
- ™
- — "
. n
\d - «
* S
*.class 3 .-
*
. .

G
LI T

Class-discriminative

P1
features Class-shared features
\ ya:yp?‘éyn ‘ ya#yp#yn

Ya = Yp — Yn

Encoder f

s.a. ResNet50, Inception-BN

‘—"!“M: E

class 1

“.class 3 .-
13Milbich, Roth, Bharadhwaj, Sinha, Y.Bengio, Ommer, Cohen 2021 " - -~ '



Ensemble-based DML

e DIiVA® :Diverse Visual Feature Aggregation:
Multi-task ensemble with each learner
focussing on complementary features

*
*
*
.

Class-discriminative

b1 - dase s
features Class-shared features
\ ya:yp?‘éyn ya#yp#yn

Ya = Yp — Yn

Encoder f

s.a. ResNet50, Inception-BN

‘—"!“M: E

class 1

= —lo
Z EIQNI g ZInNN exp(w(d

,n

DaNCE loss:
Distance adapted NCE Loss

". class 3,’
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Ensemble-based DML

e DIiVA® :Diverse Visual Feature Aggregation:
Multi-task ensemble with each learner
focussing on complementary features

*

. \
~ —
L

\
e\
s B x:
‘
L

class 1

Dataset — CUB200-2011[60] CARS196(32] SOP[42]

Approach | |Dim|R@1 R@2 NMI |[R@1 R@2 NMI|[R@1 R@10 NMI -
Margin[64] (orig, R50) 12863.6 74.4 69.0 |79.6 86.5 69.1]|72.7 86.2 90.7

Margin[64] (ours, IBN) 512(63.6 74.7 68.3 [79.4 86.6 66.2|76.6 89.2 89.8

DiVA (IBN, D & Da) 512]64.5]/76.0 68.8 [80.4] 87.7 67.2[77.0] 89.4 90.1

DiVA (IBN, D & ? taskds12[651[76.4 69.0 [81.5]88.3 66.8]77.2( 89.6 90.0
DiVA (IBN, D & I 512 |64.9) 75.8 68.4 |80.6] 87.9 67.4]76.9] 89.4 89.9
=~ DiVA(IBN,D& Da&1) |510[053]76.5 68.3 [B2.7) 89.1 67.8[75:8] 89.0 89.8 i-shared features
DiVA (IBN, D & Stasks 510(65.5/76.4 68.4 [82.1] 89.4 67.2]77.0] 89.3 89.7

L
L. . DiVA (IBN,D & Da &8) .| 510]659]76.7 68.9 [82.6] 89.6 68.0|77.4] 89.6 90.1 Yp 7 Yn
DiVA (IBN, D & Da &5 512 [66.4]77.2 69.6 [83.1]90.0 68.1|77.5] 90.3 90.1
G I I
Encoder f

s.a. ResNet50, Inception-BN

[]
. " " .

7 am't. t. Class2 .-
z e, . %EIGNI_IOg

6 : DaNCE loss: .
. ; - Distance adapted NCE Loss *. class 3
-class3 .- e ‘
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Deep Metric Learning (DML)

Next talk:

Proxy-based DML

s Contextual DML
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Encoder f

s.a. ResNetb0, Inception-BN
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Ensemble-based DML

e S2SD': Learn ensemble of teachers and distill their ‘knowledge’ into student

Architecture B‘i“_r%ie
—L+__---_— “Student”
& || “Teacher 1”

Batch) L > 1
% -« [— “Teacher 2”

Backbone gb

* | =l = “Teacher 37

14Roth, Milbich, Ommer, Cohen, Ghassemi 2021



Ensemble-based DML

e S2SD': Learn ensemble of teachers and distill their ‘knowledge’ into student

Architecture Batchsize - Sirm. Marices
A £ [l | ‘“student’

g [ ] “Teacher 1”

‘@' =l =% “Teacher 2”

Backbone gb

AL 1 - “Teacher 3”

14Roth, Milbich, Ommer, Cohen, Ghassemi 2021



Ensemble-based DML

e S2SD!*: Learn ensemble of teachers and distill their ‘knowledge’ into student
e use different embedding dimensionalities for teachers to increase robustness of student

Independent DML optimization

Architecture Batchsize  Sim. Matrices
HINl S « » LDML
1L PP Student

(|:| 2k ) Training

]

— &l 11 “Teacher 1” LDML(H’ )

00 oo |
Lx (D : |)
Ehendia L ’L__l
Batch) —p L I ¢ \

W» = =k Teacher 2 —
Backbone gb UL L LDML(H : ) LKL‘(\\ : IL_ _! )
Al —>E “Teacher 3” 4\1( o E :\)\
N

Knowledge distillation:
enforce consistent similarity matrices

14Roth, Milbich, Ommer, Cohen, Ghassemi 2021






Visual Similarity Learning

Given data distribution X

train /

infer pairwise semantic similarity.

Infer pairwise similarity

>

Input space (Images)



Visual Similarity Learning Stmilarity?

: Co . . . « e er_ e similar :
Given data distribution X_. , infer pairwise semantic similarity. i
dissimilar E

similar E

o ) dissimilar |

Infer pairwise similarity — o

< Viewpoint ,

» LT e YERPPIRD

similar E

Input space (Images) dissimilar !




Visual Similarity Learning Stmilarity?

Given data distribution X

train /

infer pairwise semantic similarity.

Infer pairwise similarity

-
indicated by class labels

similar

Input space (Images) dissimilar




Visual Similarity Learning Stmilarity?

Learn representation ¢(z) which reflects semantic
similarity d(¢(z;), #(x;)) within training distribution X,.;,.

Batch) — ¢

Encoder f

s.a. ResNetb0, Inception-BN

Input space (Images)




Ensemble-based DML

g 60 —— CARS196
= 25
3 50
. . . . . . . . = 20
e Typically there are different notions of similarity (classes, color, viewpoint, ...) 2 40
e Assumption: Different features improve robustness to OOD data (new classes, etc.) s i
o . . . . . . . © 10
e Explicit similarity specialization of learners Q ol — cus200.2011
® Only class-labels available: use unsupervised learning 0 20 o 60 80 100 2
poc
class 1 \ Qé\ o t={L, I, 1)
s > — — ¢1 @—.Q J— # Ldisc
—— class 1 @ Ya = Yp yn
: 6 . class 2
intermediate } ‘ .
R%ﬁ&?‘flerp{[ representation *v.+"Class 3 * capture features separating between classes

* aggregate features into ‘classes’
e very specialized
e e.g. “Ferrari” vs. “Hummer”

Surrogate task

AdversariaIT Decorrelation

class 3

P —

_¢2 . G\M' t = {Ia7 } L

::;udr;dize ic Cluster 1 6 G Cq = Cp 7& Cn surrogate
e - > . Cluster2 o
I v+ Gluster 3 Inter-class characteristics
; ; I e anchors and positives from same cluster
represent E i surrogate labels 1 (different class Iabels!)
icnr::;ifesﬁsﬁcs : 0 et e represent inter-class characteristics,
ki MIC: Mining inter-class e.g. viewpoint, color, etc.

="

characteristics”

1Roth, Brattoli, Ommer 2018



Learn representation & which reflects
semantic similarity within training
distribution X .

Class 3

Input space (Images) Embedding space

Class 2



Learning Visual Representations

Learn representation ¢(z) which reflects semantic similarity
within training distribution Xain .

G
LI T

Deep Metric
Learning (DML)

b B || = = = =0 Classification

Surrogate Tasks

Encoder f
s.a. ResNet50, Inception-BN

Input space (Images) Representation Learning



Learn representation & which reflects
semantic similarity within training
distribution X .

Class 3

Input space (Images) Embedding space

Class 2



Introduction DML

g Model Architecture N ( Objective Function N[ Data Sampling
e Backbone architecture e Formulation: :
. Erbedding o B o Ranking-based e Batch sampling
MPeCting Gimensionaiity o Proxy-based e Triplet, Pair, Tupel sampling
e Basic Regularization o Classification-based
- N e data synthesis
e Batchsize e Task-specific regularization
e etc. * etc. ° etc.
\_

)

> OOD Generalization? <



Learning Visual Representations

(Out-Of-Distribution-Generalization)
How well does & capture unseen classes, unknown surroundings,

viewpoints, continual class changes? I
X A -
‘;/ Sl - : A \
r» . P8
L X
¢ N
Encode X, !

Input space (Images)



Learning Visual Representations

(Out-Of-Distribution-Generalization)
How well does & capture unseen classes, unknown surroundings,
viewpoints, continual class changes?

Encode X

test

>

Input space (Images)



Learning Visual Representations

(Out-Of-Distribution-Generalization)

How well does & capture unseen classes, unknown surroundings,
: - @ﬁ@oi’m LN

et “:%

viewpoints, continual class changes?

Encode X, > 8

AN e .
T e

Input space (Images)



Learning Visual Representations

(Out-Of-Distribution-Generalization)
How well does & capture unseen classes, unknown surroundings,

viewpoints, continual class changes? AT
(il o3 B ‘%‘:2"\
Evaluation needs to consider broad range of . 27
test distributions and difficulty. “" Q“i
N
[] %
Encode X,
>

|

| AN
Input space (Images)
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Negative Sampling in Ranking-based DML

p(I,|I,) ¥ Flexible Sampling distribution
p{dan € uk} = Pk ofg‘;:@

20 @

DML optimization

Adaptive Negative Sampling using Reinforcement Learning

z::itr;ing . p(I,|1,) u {Ia,fp,ln}
o (0] )| |-2mele @) = [, ], —ediust miis el
g (@|s) klk=1 - . = L
= e} +—I—|—dan : train model
T s It L | p(In‘Ia)

update 7Tg

ather statistics

Nnr
OJ

4 PADS: Policy-Adapted Sampling for Visual Similarity Learning, CVPR 2020



Negative Sampling in Ranking-based DML

p(I,|I,) ¥ Flexible Sampling distribution
p{dan = Uk} = Dk

Adaptive Negative Sampling using Reinforcement Learning

distribution change

O @) =@ = [ay)ic, 2=

pUn|la)

Pk
e

an

!

update 7Tg

(__;ather statistics

20@

DML optimization

Ua, Ip, In}

¥ train model E

o p(In|ls)

4 PADS: Policy-Adapted Sampling for Visual Similarity Learning, CVPR 2020
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Negative Sampling in Ranking-based DML

p(I,|I,) ¥ Flexible Sampling distribution
p{dan € uk} = Pk ofg‘;:@

20 @

Adaptive Negative Sampling using Reinforcement Learning DML optimization

i p(]nua) {Ia I T }
o _sample _ K djust A S
bl t——t +—I—|—dan : ’ train model
reward: performance gain validation set o i | gb(, C)I p (I’n ‘Ia)

update 7Tg

ather statistics

4 PADS: Policy-Adapted Sampling for Visual Similarity Learning, CVPR 2020



Ensemble-based DML

: S :
. . o . 3 1 SR ;5.# :
e Multi Self-Distillation | £y !
1 7‘,{ B 1
' Target Space ¥ —
 1arget sp . S .
: :
1 1
1 1
1 1
1 1

Very Large Capacity Space

> Large Capacity Space -

3 Roth, Milbich et al.; ICML 2021; S2SD: Simultaneous Similarity-based Self-distillation for Deep Metric Learning

Knowledge Distillation




Ensemble-based DML

e Shared Features, DiVA, MIC (complementary semantics,
“multi-task learning”)
e explicit specialization of learners (semantics)

representation space Surrogate task

update
Ea
encoder|

update |
E

encoder,




Overview: Typical Learning Concepts for DML Generalization

* Diverse Feature Aggregation?

* Multi Self-Distillation
e Proxy-Learning

2 Milbich, Roth et al.; ECCV 2020; DiVA: Diverse Visual Feature Aggregatlon for Deep Metric Learning
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Overview: Typical Learning Concepts for DML Generalization

* Diverse Feature Aggregation

e Multi Self-Distillation?
e Proxy Learning

1
1
1
1
1
1
\ Target Space
1
1
1
1
1
1
1

Knowledge Distillation

Large Capacity Space —

Very Large Capacity Space _

3 Roth, Milbich et al.; ICML 2021; S2SD: Simultaneous Similarity-based Self-distillation for Deep Metric Learning




