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Grand Goal of Machine Learning in CV

Learning to solve a task

Learning a representation 
of the world

Classification Regression     … 

& its semantic
interdependencies
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Relations Matter:
Nearest Neighbor  Classification, 
Density Estimation, Retrieval

?
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Relations Matter:
Grouping
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Relations Matter: 
Data Visualization

[t-SNE, v. d. Maaten & Hinton, JMLR’08]
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visual synthesis

Learning an Embedding aka Features

E C

D

features classification

regression

grouping

segmentation
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Learning an Embedding aka Features

E

features

When you have difficulty in classification, 
do not look for ever more esoteric mathematical tricks, 
instead, find better features.

–B.P.K Horn: Robot Vision, 1986
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Key Challenge of Data Analysis:

[Esteva et al., Nature 542, 2017]

Intra-Class Variability
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… Find Better Features

§ Invariance to clutter

Lehar S. (2003): The World In Your Head

§ BUT:Preserve essential 
characteristics for task

§ dim(feature) << dim(input)
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Invariance

§ Invariance of features ➪ equivalence classes

[Rombach, Esser, Ommer, ECCV’20]

prediction:
wolf

invariances

sampling invariances
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What Characteristics to Retain?

?

Classification



Björn Ommer | ommer@uni-heidelberg.deBjörn Ommer | b.ommer@lmu.de

Want Richer, Fine-grained Structure?A Survey on Metric Learning for Feature Vectors and Structured Data

Metric Learning

Figure 1: Illustration of metric learning applied to a face recognition task. For simplicity,
images are represented as points in 2 dimensions. Pairwise constraints, shown
in the left pane, are composed of images representing the same person (must-
link, shown in green) or different persons (cannot-link, shown in red). We wish
to adapt the metric so that there are fewer constraint violations (right pane).
Images are taken from the Caltech Faces dataset.8
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Figure 2: The common process in metric learning. A metric is learned from training data
and plugged into an algorithm that outputs a predictor (e.g., a classifier, a regres-
sor, a recommender system...) which hopefully performs better than a predictor
induced by a standard (non-learned) metric.

λ ≥ 0 is the regularization parameter. As we will see in this survey, state-of-the-art metric
learning formulations essentially differ by their choice of metric, constraints, loss function
and regularizer.

After the metric learning phase, the resulting function is used to improve the perfor-
mance of a metric-based algorithm, which is most often k-Nearest Neighbors (k-NN), but
may also be a clustering algorithm such as K-Means, a ranking algorithm, etc. The common
process in metric learning is summarized in Figure 2.

1.2 Applications

Metric learning can potentially be beneficial whenever the notion of metric between in-
stances plays an important role. Recently, it has been applied to problems as diverse as
link prediction in networks (Shaw et al., 2011), state representation in reinforcement learn-
ing (Taylor et al., 2011), music recommendation (McFee et al., 2012), partitioning problems

8. http://www.vision.caltech.edu/html-files/archive.html
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Different Notions 
of Similarity?

Similarity?

similar

dissimilar

similar

dissimilar

similar

dissimilar
Color

Viewpoint

Class
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Metric / Similarity / Representation 
Learning

Goal: Learn sematic relations btw datapoints

A Survey on Metric Learning for Feature Vectors and Structured Data
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Idea: Learn a mapping 𝜓 𝑥! s.t.: 
semantic relations 
btw. 𝑥! , 𝑥! ∈ 𝒳
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𝜓 " metric distances

𝐷"= 𝜓(𝑥!) − 𝜓(𝑥#) $
$

Classical approaches to learning (lin.) embedding: PCA, 
LDA, Conv Opt. …
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(Pseudo) Metric

§ 𝑑:𝒳×𝒳 → ℝ"#
§ Pseudo: 𝑑 𝑥, 𝑥 = 0 | metric: 𝑑 𝑥, 𝑦 = 0⟺ 𝑥 = 𝑦
§ Symmetry: 𝑑 𝑥, 𝑦 = 𝑑 𝑦, 𝑥
§ Subadditivity: 𝑑 𝑥, 𝑧 ≤ 𝑑 𝑥, 𝑦 + 𝑑 𝑦, 𝑧

d ,,, ≔ Δ(𝜓%(,), 𝜓%(,))
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Metric Learning: Research Directions

[Bellet et al.: arXiv:1306.6709]
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Linear Metric Learning: 
Mahalanobis Dist

𝑑$(𝑥, 𝑦) = 𝑥 − 𝑦 %𝑀 𝑥 − 𝑦

= 𝑥 − 𝑦 % 𝐿%𝐿 𝑥 − 𝑦

= 𝐿𝑥 − 𝐿𝑦 % 𝐿𝑥 − 𝐿𝑦

𝑀 = Σ&':	Mahalanobis
𝑀 = 𝕀: Euclidean

Typically: rank 𝑀 < dim(𝒳)
➪ Low dim. embedding

[Xing et al. Distance Metric Learning with Application to Clustering with Side-Information. NIPS’02]

§ Challenges [Xing et al., NIPS’02]

§ Assuring 𝑀 is PSD ➪ 𝒪(dim(𝒳)!)

§ Rank constraint or regularization on 𝑀➪ NP-hard

§ Alternative: no PSD (violate axioms) ➪ bilinear 
form: 𝑑$ 𝑥, 𝑦 = 𝑥&𝑀𝑦
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Beyond Linearity

§ Linearity: Convexity & robustness to overfitting
§ Representing non-linear structure

§ Kernel trick: linear metric learning after non-lin embedding 

into kernel space

§ Kernel k 𝑥, 𝑥" =< 𝜙 𝑥 , 𝜙 𝑥′ >

§ 𝜱 = [𝜙 𝑥# , … , 𝜙 𝑥$ ], let 𝐿% = Φ𝑈%➪ 𝑀 = 𝑈%𝑈

➪ d&' 𝜙 𝑥 , 𝜙 𝑥" = 𝐾 − 𝐾" %𝑀 𝐾 − 𝐾"

𝐾 = 𝜱%𝜙 𝑥 = 𝑘 𝑥#, 𝑥 , … , 𝑘 𝑥$ , 𝑥 %

§ BUT: 𝒪 n' params & only inner products

[Chatpatanasiri et al. A new kernelization framework for Mahalanobis distance learning algorithms
. Neurocomputing, 2010]
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Deep Metric & Representation LearningA Survey on Metric Learning for Feature Vectors and Structured Data

Metric Learning

Figure 1: Illustration of metric learning applied to a face recognition task. For simplicity,
images are represented as points in 2 dimensions. Pairwise constraints, shown
in the left pane, are composed of images representing the same person (must-
link, shown in green) or different persons (cannot-link, shown in red). We wish
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λ ≥ 0 is the regularization parameter. As we will see in this survey, state-of-the-art metric
learning formulations essentially differ by their choice of metric, constraints, loss function
and regularizer.

After the metric learning phase, the resulting function is used to improve the perfor-
mance of a metric-based algorithm, which is most often k-Nearest Neighbors (k-NN), but
may also be a clustering algorithm such as K-Means, a ranking algorithm, etc. The common
process in metric learning is summarized in Figure 2.

1.2 Applications

Metric learning can potentially be beneficial whenever the notion of metric between in-
stances plays an important role. Recently, it has been applied to problems as diverse as
link prediction in networks (Shaw et al., 2011), state representation in reinforcement learn-
ing (Taylor et al., 2011), music recommendation (McFee et al., 2012), partitioning problems
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𝑥 𝜓(𝑥)𝜓(,)

𝜓 ,

𝐷(= 𝜓(𝑥!) − 𝜓(𝑥#) $
$

𝒳
embedding
𝜓(𝒳)

DML: find representation of semantic relations

+normalize

[Bautista et al NIPS‘16, 
Sanakoyeu et al CVPR‘19, 
Milbich et al. PAMI’20, Pattern Recogn’20,
Roth et al. ICCV‘19]
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Deep Metric & Representation Learning

𝑥

embedding
𝜓(𝒳)

DML: find representation of semantic relations

[Bautista et al NIPS‘16, 
Sanakoyeu et al CVPR‘19, 
Milbich et al. PAMI’20, Pattern Recogn’20,
Roth et al. ICCV‘19]

…

embedding  

Latent representations

𝑓 𝜙
normalize

𝜓(𝑥)

𝜓(𝑥)𝑥

feature 
extraction

map to metric
space
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DML in a Nutshell
§ Choose a parametrized embedding fct 𝜓'
§ Pick a distance measure Δ for the embedding 

space, e.g. Δ(𝜓' 𝑥! , 𝜓'(𝑥()) = 𝜓' 𝑥! , 𝜓'(𝑥()) )
)

§ Gather data 𝒳 = {𝑥!} & similarity judgements
§ 𝑆 = 𝑥* , 𝑥+ 𝑥* , 𝑥+ are similar

§ 𝐷 = 𝑥* , 𝑥+ 𝑥* , 𝑥+ are dissimilar

§ 𝑇 = 𝑥* , 𝑥+ , 𝑥, 𝑥* is more similar to 𝑥+ than to 𝑥,

§ Optimize 𝜃 s.t. d ;,; ≔ Δ(𝜓'(;), 𝜓'(;)) best agrees
with judgements argmin'𝐿 𝜓' , Δ, 𝑆, 𝐷, 𝑇 + 𝜆ℛ(𝜓')

loss regularization
[Bellet et al.: arXiv:1306.6709]



Björn Ommer | ommer@uni-heidelberg.deBjörn Ommer | b.ommer@lmu.de

Main Topics in DML 

§ Objective function 𝐿!
§ Ranking-based

- Contrastive w/ margin

- Multi-similarity loss

- …

(𝑥! , 𝑥" , 𝑥#)

Anchor Positive Negative
𝐿- = 𝐷- 𝑥* , 𝑥+ − 𝐷- 𝑥* , 𝑥, + 𝛾

.
+ direct optimization 
of  metric 

[Wu et al., ICCV’17],
[Wang et al., CVPR’19]

𝜑 ← argmin
(

𝐿(
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Main Topics in DML 

§ Objective function
§ Ranking-based

§ Proxy-based

- ProxyNCA 𝐿 = log
exp−𝐷-(𝑥* , 𝑝*)

∑/∈1\{/!} exp−𝐷- 𝑥* , 𝑝

(  ,    ,    )
𝑝!𝑥! 𝑝𝑝!

𝑝
𝑥!

[Movshovitz-Attias et al., ICCV’17],
[Goldberger et al., NIPS’04],
[Kim et al. CVPR’20],
[Qian et al., ICCV’19]
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Main Topics in DML 

§ Objective function
§ Ranking-based

§ Proxy-based

§ Classification-based 𝐿 = ∑+5*max[0, 𝐷- 𝑥* , 𝑥+ + 𝛾]

[Deng et al., et al., CVPR’19],
[Liu et al. CVPR’17],
[Liu et al. ICML’16],
[Wang et al. CVPR’18]
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Main Topics in DML 

§ Objective function
§ Sampling matters

§ Local (mini-batch) vs. 

global mining

§ (Semi-)Hard-negatives

§ Hardness-aware

§ Easy positives

§ Adversarial negative synth.

...

Cannot train on all 𝒪(𝑁!) triplets 

➪ Define sampling distrib.   
𝑝 𝑥, 𝑥* , 𝑥+ , 𝑦* = 𝑦+ ≠ 𝑦,

(   ,    ,   )?
𝑥! 𝑥" 𝑥#

[Wu et al., ICCV’17],
[Huang et al. ECCV’18],
[Harwood et al., ECCV’17], 
[Iscen etal., CVPR’18]
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Main Topics in DML 

§ Objective function
§ Sampling matters
§ Ensemble methods

§ Combining multiple (local) embeddings

[Freund, Schapire, JCSS’97 ],
[Guo, Gould, arXiv:1506.07224], 
[Opitz et al., ICCV’17],
[Yuan et al., ICCV’17],
[Sanakoyeu et al. PAMI.2021.3113270]
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Main Topics in DML 

§ Objective function
§ Sampling matters
§ Ensemble methods
§ Generalization

[Sharing Matters for Generalization in Deep Metric Learning, PAMI 2020],
[Characterizing generalization under out-of-distribution shifts in deep 
metric learning, NeurIPS’21]
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Metric Learning: Summary

§ Similarity measures basis for numerous CV&ML 
tasks

§ Learning richly structured, low-dim embeddings: 
fine-grained relationships

§ Metric learning: 
§ Linear, kernelized, non-linear with neural network

§ DML main direction:
§ Objective function
§ Sampling strategies
§ Ensemble methods
§ Generalization

§ Capturing semantic similarity: holy grail of CV&ML


